首页> 外文学位 >Physics-based and Data-driven Methods with Compact Computing Emphasis for Structural Health Monitoring.
【24h】

Physics-based and Data-driven Methods with Compact Computing Emphasis for Structural Health Monitoring.

机译:基于物理和数据驱动的方法,具有紧凑的计算重点,可用于结构健康监测。

获取原文
获取原文并翻译 | 示例

摘要

This doctoral dissertation contributes to both model-based and model-free data interpretation techniques in vibration-based Structural Health Monitoring (SHM). In the model-based category, a surrogate-based finite element (FE) model updating algorithm is developed to improve the computational efficiency by replacing the FE model with Response Surface (RS) polynomial models in the optimization problem of model calibration. In addition, formulation of the problem in an iterative format in time domain is proposed to extract more information from measured signals and compensate for the error present in the regressed RS models. This methodology is applied to a numerical case study of a steel frame with global nonlinearity. Its performance in presence of measurement noise is compared with a method based on sensitivity analysis and it is observed that while having comparable accuracy, proposed method outperforms the sensitivity-based model updating procedure in terms of required time. With the assumption of Gaussian measurement noise, it is also shown that this parameter estimation technique has low sensitivity to the standard deviation of the measurement noise. This is validated through several parametric sensitivity studies performed on numerical simulations of nonlinear systems with single and multiple degrees of freedom. The results show the least sensitivity to measurement noise level, selected time window for model updating, and location of the true model parameters in RS regression domain, when vibration frequency of the system is outside the frequency bandwidth of the load. Further application of this method is also presented through a case study of a steel frame with bilinear material model under seismic loading. The results indicate the robustness of this parameter estimation technique for different cases of input excitation, measurement noise level, and true model parameters.;In the model-free category, this dissertation presents data-driven damage identification and localization methods based on two-sample control statistics as well as damage-sensitive features to be extracted from single- and multivariate regression models. For this purpose, sequential normalized likelihood ratio test and two-sample t-test are adopted to detect the change in two families of damage features based on the coefficients of four different linear regression models. The performance of combinations of these damage features, regression models and control statistics are compared through a scaled two-bay steel frame instrumented with a dense sensor network and excited by impact loading. It is shown that the presented methodologies are successful in detecting the timing and location of the structural damage, while having acceptable false detection quality. In addition, it is observed that incorporating multiple mathematical models, damage-sensitive features and change detection tests improve the overall performance of these model-free vibration-based structural damage detection procedures.;In order to extend the scalability of the presented data-driven damage detection methods, a compressed sensing damage localization algorithm is also proposed. The objective is accurate damage localization in a structural component instrumented with a dense sensor network, by processing data only from a subset of sensors. In this method, first a set of sensors from the network are randomly sampled. Measurements from these sampled sensors are processed to extract damage sensitive features. These features undergo statistical change point analysis to establish a new boundary for a local search of damage location. As the local search proceeds, probability of the damage location is estimated through a Bayesian procedure with a bivariate Gaussian likelihood model. The decision boundary and the posterior probability of the damage location are updated as new sensors are added to processing subset and more information about location of damage becomes available. This procedure is continued until enough evidence is collected to infer about damage location. Performance of this method is evaluated using a FE model of a cracked gusset plate connection. Pre- and post-damage strain distributions in the plate are used for damage diagnosis.;Lastly, through study of potential causes of damage to the Washington Monument during the 2011 Virginia earthquake, this dissertation demonstrates the role that SHM techniques plays in improving the credibility of damage assessment and fragility analysis of the constructed structures. An FE model of the Washington Monument is developed and updated based on the dynamic characteristics of the structure identified through ambient vibration measurement. The calibrated model is used to study the behavior of the Monument during 2011 Virginia earthquake. This FE model is then modified to limit the tensile capacity of the grout material and previously cracked sections to investigate the initiation and propagation of cracking in several futuristic earthquake scenarios. The nonlinear FE model is subjected to two ensembles of site-compatible ground motions representing different seismic hazard levels for the Washington Monument, and occurrence probability of several structural and non-structural damage states is investigated.
机译:该博士论文为基于振动的结构健康监测(SHM)中的基于模型和无模型的数据解释技术做出了贡献。在基于模型的类别中,开发了基于代理的有​​限元(FE)模型更新算法,以通过在模型校准的优化问题中将FE模型替换为响应面(RS)多项式模型来提高计算效率。此外,提出了时域迭代格式的问题公式,以从测量信号中提取更多信息并补偿回归RS模型中存在的误差。该方法应用于具有整体非线性的钢框架的数值案例研究。将其在存在测量噪声的情况下的性能与基于灵敏度分析的方法进行了比较,可以观察到,尽管具有相当的精度,但在所需时间方面,所提出的方法优于基于灵敏度的模型更新过程。在高斯测量噪声的假设下,还表明该参数估计技术对测量噪声的标准偏差不敏感。这通过对具有单自由度和多个自由度的非线性系统的数值模拟进行的多项参数敏感性研究得到了验证。结果表明,当系统的振动频率超出负载的频率带宽时,对测量噪声水平,选择的模型更新时间窗口以及真实模型参数在RS回归域中的敏感度最低。通过对具有双线性材料模型的钢框架在地震荷载作用下的案例研究,也提出了该方法的进一步应用。结果表明,该参数估计技术在输入激励,测量噪声水平和真实模型参数不同情况下的鲁棒性。在无模型类别中,本文提出了基于两样本的数据驱动损伤识别和定位方法。控制统计数据以及对损伤敏感的特征,这些特征将从单变量和多元回归模型中提取。为此,基于四个不同的线性回归模型的系数,采用序贯归一化似然比检验和两样本t检验来检测两个损伤特征族的变化。这些损伤特征,回归模型和控制统计数据的组合性能通过配备了密集传感器网络并受冲击载荷激励的比例缩放的两托架钢框架进行了比较。结果表明,所提出的方法能够成功地检测结构损坏的时间和位置,同时具有可接受的错误检测质量。此外,可以观察到,将多个数学模型,损伤敏感特征和变化检测测试相结合,可以改善这些基于振动的无模型结构损伤检测程序的整体性能。为了扩展数据驱动的可扩展性损伤检测方法,提出了一种压缩感知损伤定位算法。目的是通过仅处理传感器子集的数据,在装有密集传感器网络的结构部件中进行精确的损伤定位。在这种方法中,首先对网络中的一组传感器进行随机采样。处理来自这些采样传感器的测量值,以提取损伤敏感特征。这些特征经过统计变化点分析,以建立新的边界,以便对损坏位置进行本地搜索。随着本地搜索的进行,使用双变量高斯似然模型通过贝叶斯方法估计损坏位置的概率。随着将新传感器添加到处理子集中,并且可以使用有关损坏位置的更多信息,更新损坏位置的决策边界和后验概率。继续进行此过程,直到收集到足够的证据来推断损坏位置为止。使用开裂的角撑板连接的有限元模型评估该方法的性能。板中损坏前后的应变分布用于损伤诊断。最后,通过研究2011年弗吉尼亚地震期间华盛顿纪念碑的潜在损坏原因,本文证明了SHM技术在提高已建结构的损伤评估和脆性分析的可信度方面的作用。根据通过环境振动测量确定的结构的动态特性,开发并更新了华盛顿纪念碑的有限元模型。校准后的模型用于研究2011年弗吉尼亚地震期间纪念碑的行为。然后修改此有限元模型,以限制灌浆材料和先前破裂的部分的抗拉能力,以研究几种未来地震情景下裂缝的产生和传播。非线性有限元模型经过两个场址兼容的地面运动合奏,分别代表华盛顿纪念碑的不同地震危险等级,并研究了几种结构性和非结构性损坏状态的发生概率。

著录项

  • 作者

    Shahidi, S. Golnaz.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Civil engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:47:11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号