首页> 外文期刊>Mechanical systems and signal processing >Characterizing resonant component in speech: A different view of tracking fundamental frequency
【24h】

Characterizing resonant component in speech: A different view of tracking fundamental frequency

机译:表征语音中的共振成分:跟踪基频的另一种观点

获取原文
获取原文并翻译 | 示例

摘要

Inspired by the nonlinearity and nonstationarity and the modulations in speech, Hilbert-Huang Transform and cyclostationarity analysis are employed to investigate the speech resonance in vowel in sequence. Cyclostationarity analysis is not directly manipulated on the target vowel, but on its intrinsic mode functions one by one. Thanks to the equivalence between the fundamental frequency in speech and the cyclic frequency in cyclostationarity analysis, the modulation intensity distributions of the intrinsic mode functions provide much information for the estimation of the fundamental frequency. To highlight the relationship between frequency and time, the pseudo-Hilbert spectrum is proposed to replace the Hilbert spectrum here. After contrasting the pseudo-Hilbert spectra of and the modulation intensity distributions of the intrinsic mode functions, it finds that there is usually one intrinsic mode function which works as the fundamental component of the vowel. Furthermore, the fundamental frequency of the vowel can be determined by tracing the pseudo-Hilbert spectrum of its fundamental component along the time axis. The later method is more robust to estimate the fundamental frequency, when meeting nonlinear components. Two vowels [a] and [ⅰ], picked up from a speech database FAU Aibo Emotion Corpus, are applied to validate the above findings.
机译:受非线性和非平稳性以及语音调制的启发,采用希尔伯特-黄变换和循环平稳性分析方法依次研究元音中的语音共振。循环平稳性分析不是直接在目标元音上进行,而是在其固有模式下进行。由于语音中的基本频率与循环平稳性分析中的循环频率相等,因此本征模式函数的调制强度分布为估算基本频率提供了很多信息。为了突出频率和时间之间的关系,在此提出了伪希尔伯特频谱来代替希尔伯特频谱。在对本征模函数的伪希尔伯特谱和调制强度分布进行对比之后,发现通常存在一个本征模函数作为元音的基本成分。此外,元音的基本频率可以通过沿着时间轴跟踪其基本成分的伪希尔伯特频谱来确定。当满足非线性分量时,后一种方法对于估计基频更加鲁棒。从语音数据库FAU Aibo Emotion Corpus中拾取的两个元音[a]和[and]用于验证上述发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号