首页> 外文期刊>Mechanical systems and signal processing >Nonlinear dynamic analysis for coupled vehicle-bridge vibration system on nonlinear foundation
【24h】

Nonlinear dynamic analysis for coupled vehicle-bridge vibration system on nonlinear foundation

机译:基于非线性基础的车桥耦合振动系统的非线性动力学分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the nonlinear dynamics of a parametrically excited coupled vehicle-bridge vibration system (CVBVS) is investigated, and the coupled system is subjected to a time-dependent transverse load including a constant value together with a harmonic time-variant component. The dynamic equations of the CVBVS are established by using the generalized Lagrange's equation. With the Galerkin truncation method, a set of nonlinear ordinary differential equations are derived by discretizing the continuous governing equation. The influences of parametric excitation with nonlinear support stiffness, mass ratio, excitation amplitude and position relation on the dynamic behaviors are studied for the interaction between vehicle and the bridge. The analysis results indicate that the nonlinear dynamic characteristics are strongly attributed to the interaction of the coupled system. Nonlinear support stiffness of foundation and mass ratio can lead to complex dynamic behaviors such as jump discontinuous phenomenon, periodic, quasi-periodic and chaotic motions. Vibration amplitude increases depending on the position, where the maximum vibration displacement does not occur at the center of the bridge. The excitation amplitude has an obvious influence on the nonlinear dynamic behaviors and the increase of the excitation amplitude makes the vibration strengthen. The bifurcation diagram and 3-D frequency spectrum are used to analyze the complex nonlinear dynamic behaviors of the CVBVS. The presented results can provide an insight to the understanding of the vibration characteristics of the coupled vehicle-bridge vibration system in engineering.
机译:在本文中,研究了参数激励耦合车桥振动系统(CVBVS)的非线性动力学,并对该耦合系统施加了与时间有关的横向载荷,该载荷包括恒定值和谐波时变分量。通过使用广义拉格朗日方程建立CVBVS的动力学方程。使用Galerkin截断法,通过离散化连续控制方程,导出了一组非线性常微分方程。研究了具有非线性支撑刚度,质量比,激励幅度和位置关系的参数激励对车辆与桥梁相互作用的动力学行为的影响。分析结果表明,非线性动力学特性强烈地归因于耦合系统的相互作用。基础的非线性支撑刚度和质量比会导致复杂的动力学行为,例如跳跃不连续现象,周期性,准周期性和混沌运动。振动幅度取决于位置,在桥梁的中心位置不会发生最大振动位移。激励幅度对非线性动力学行为有明显的影响,激励幅度的增加使振动增强。分叉图和3-D频谱用于分析CVBVS的复杂非线性动力学行为。提出的结果可以为理解工程中耦合车桥振动系统的振动特性提供一个见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号