首页> 外文期刊>Mechanical systems and signal processing >Accurate modal superposition method for harmonic frequency response sensitivity of non-classically damped systems with lower-higher-modal truncation
【24h】

Accurate modal superposition method for harmonic frequency response sensitivity of non-classically damped systems with lower-higher-modal truncation

机译:低模态截断的非经典阻尼系统谐波频率响应灵敏度的精确模态叠加方法

获取原文
获取原文并翻译 | 示例

摘要

Frequency response and their sensitivities analysis are of fundamental importance. Due to the fact that the mode truncation errors of frequency response functions (FRFs) are introduced for two times, the errors of frequency response sensitivities may be larger than other dynamic analysis. Many modal correction approaches (such as modal acceleration methods, dynamic correction methods, force derivation methods and accurate modal superposition methods) have been presented to eliminate the modal-truncation error. However, these approaches are just suitable to the case of un-damped or classically damped systems. The state-space equation based approaches can extend these approaches to non-classically damped systems, but it may be not only computationally expensive, but also lack physical insight provided by the superposition of the complex modes of the equation of motion with original space. This paper is aimed at dealing with the lower-higher-modal truncation problem of harmonic frequency response sensitivity of non-classically damped systems. Based on the Neumann expansion and the frequency shifting technique, the contribution of the truncated lower and higher modes to the harmonic frequency response sensitivity is explicitly expressed only by the available middle modes and system matrices. An extended hybrid expansion method (EHEM) is then proposed by expressing harmonic frequency response sensitivity as the explicit expression of the middle modes and system matrices. The EHEM maintains original-space without having to involve the state-space equation of motion such that it is efficient in computational effort and storage capacity. Finally, a rail specimen is used to illustrate the effectiveness of the proposed method.
机译:频率响应及其灵敏度分析至关重要。由于两次引入了频率响应函数(FRF)的模式截断误差,因此频率响应灵敏度的误差可能大于其他动态分析的误差。为了消除模态截断误差,已经提出了许多模态校正方法(例如模态加速方法,动态校正方法,力推导方法和精确的模态叠加方法)。但是,这些方法仅适用于无阻尼或经典阻尼系统。基于状态空间方程的方法可以将这些方法扩展到非经典阻尼系统,但它不仅计算量大,而且缺乏运动方程与原始空间的复杂模式的叠加所提供的物理洞察力。本文旨在解决非经典阻尼系统谐波频率响应灵敏度的下高模态截断问题。基于Neumann扩展和移频技术,仅通过可用的中间模式和系统矩阵即可明确表示被截断的上下模式对谐波频率响应灵敏度的贡献。然后,通过将谐波频率响应灵敏度表示为中间模式和系统矩阵的明确表示,提出了一种扩展的混合扩展方法(EHEM)。 EHEM无需涉及状态空间运动方程即可保持原始空间,从而在计算工作量和存储容量方面非常有效。最后,使用轨道样本来说明所提方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号