首页> 外文期刊>Mechanical systems and signal processing >Particle-filtering-based failure prognosis via sigma-points: Application to Lithium-Ion battery State-of-Charge monitoring
【24h】

Particle-filtering-based failure prognosis via sigma-points: Application to Lithium-Ion battery State-of-Charge monitoring

机译:通过sigma-points进行基于粒子过滤的故障预测:在锂离子电池充电状态监测中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel prognostic method that allows a proper characterization of the uncertainty associated with the evolution in time of nonlinear dynamical systems. The method assumes a state-space representation of the system, as well as the availability of particle-filtering-based estimates of the state posterior density at the moment in which the prognostic algorithm is executed. Our proposal significantly improves all particle-filtering-based prognosis frameworks currently available in two main aspects. First, it provides a correction for the expression that is used for the computation of the Time-of-Failure (ToF) probability mass function in the context of online monitoring schemes. Secondly, it presents a method for improved characterization of the tails of the ToF probability mass function via sequential propagation of sigma-points and the computation of Gaussian Mixture Models (GMMs). The proposed algorithm is tested and validated using experimental data related to the problem of Lithium-Ion battery State-of-Charge prognosis.
机译:本文提出了一种新的预后方法,该方法可以正确表征与非线性动力系统的时间演化相关的不确定性。该方法假定系统的状态空间表示,以及在执行预测算法时基于粒子滤波的状态后密度估计值的可用性。我们的建议极大地改善了目前在两个主要方面可用的所有基于粒子过滤的预后框架。首先,它对在在线监视方案的上下文中用于计算失效时间(ToF)概率质量函数的表达式进行了校正。其次,它提出了一种方法,可通过依次传播sigma-points和计算高斯混合模型(GMM)来改进ToF概率质量函数尾部的表征。使用与锂离子电池充电状态预后相关的实验数据对提出的算法进行了测试和验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号