首页> 外文学位 >A Lebesgue Sampling Based Diagnosis and Prognosis Methodology with Application to Lithium-Ion Batteries
【24h】

A Lebesgue Sampling Based Diagnosis and Prognosis Methodology with Application to Lithium-Ion Batteries

机译:基于Lebesgue采样的诊断方法和预后方法在锂离子电池中的应用

获取原文
获取原文并翻译 | 示例

摘要

Fault diagnosis and prognosis (FDP) plays an important role in the modern complex industrial systems to maintain their reliability, safety, and availability. Diagnosis aims to monitor the fault state of the component or the system in real-time. Prognosis refers to the generation of long-term predictions that describe the evolution of a fault and the estimation of the remaining useful life (RUL) of a failing component or subsystem.;Traditional Riemann sampling-based FDP (RS-FDP) takes samples and executes algorithms in periodic time intervals and, in most cases, requires significant computational resources. This makes it difficult or even impossible to implement RS-FDP algorithms on hardware with very limited computational capabilities, such as embedded systems that are widely used in industries.;To overcome this bottleneck, this proposal develops a novel Lebesgue sampling-based FDP (LS-FDP), in which FDP algorithms are implemented "as-neede". Different from RS-FDP, LS-FDP divides the state axis by a number of predefined states (also called Lebesgue states). The computation of LS-based diagnosis is triggered only when the value of measurements changes from one Lebesgue state to another, or "event-triggered". This method significantly reduces the computation demands by eliminating unnecessary computation. This LS-FDP design is generic and able to accommodate different algorithms, such as Kalman filter and its variations, particle filter, relevant vector machine, etc.;This proposal first develops a particle filtering based LS-FDP for li-ion battery applications. To improve the accuracy and precision of the diagnosis and prognosis vii results, the parameters in the models are treated as time-varying ones and adjusted online by a recursive least square (RLS) method to accommodate the changing of dynamics, operation condition, and environment in the real cases. Uncertainty management is studied in LS-FDP to handle the uncertainties from inaccurate model structure and parameter, measurement noise, process noise, and unknown future loading.;The extended Kalman filter implemented in the framework of LS-FDP yields a more efficient LS-EKF algorithm. The proposed method takes full advantage of EKF and Lebesgue sampling to alleviate computation requirements and make it possible to be deployed on most of the distributed FDP systems.;All the proposed methods are verified by a study with the estimation of the state of health and RUL prediction of Lithium-ion batteries. The comparisons between traditional RS-FDP methods and LS-FDP show that LS-FDP has a much lower requirement on the computational resource. The proposed parameter adaptation and uncertainty management methods can produce more accurate and precise diagnostic and prognostic results. This research opens a new chapter for FDP method and make it easier to deploy FDP algorithms on the complicate systems build by embedded subsystem and micro-controllers with limited computational resources and communication band width.
机译:故障诊断和诊断(FDP)在现代复杂的工业系统中扮演重要角色,以保持其可靠性,安全性和可用性。诊断旨在实时监视组件或系统的故障状态。预后指的是描述故障发展以及对故障组件或子系统的剩余使用寿命(RUL)进行估计的长期预测的产生。传统的基于Riemann采样的FDP(RS-FDP)进行采样,在周期性的时间间隔内执行算法,并且在大多数情况下,需要大量的计算资源。这使得很难或什至不可能在具有非常有限的计算能力的硬件上实现RS-FDP算法,例如在行业中广泛使用的嵌入式系统。为了克服这一瓶颈,该建议开发了一种新颖的基于Lebesgue采样的FDP(LS -FDP),其中FDP算法按“原样”实施。与RS-FDP不同,LS-FDP将状态轴除以多个预定义状态(也称为Lebesgue状态)。仅当测量值从一种Lebesgue状态变为另一种“事件触发”状态时,才触发基于LS的诊断的计算。通过消除不必要的计算,该方法大大降低了计算需求。该LS-FDP设计具有通用性,能够适应不同的算法,例如卡尔曼滤波器及其变型,粒子滤波器,相关的矢量机等;该建议首先开发了一种基于粒子滤波的LS-FDP,用于锂离子电池应用。为了提高诊断和预后结果的准确性和准确性,该模型中的参数被视为随时间变化的参数,并通过递归最小二乘(RLS)方法进行在线调整以适应动态,操作条件和环境的变化在实际情况下。在LS-FDP中研究不确定性管理以处理模型结构和参数不正确,测量噪声,过程噪声以及未知的未来负载等不确定性;在LS-FDP框架中实施的扩展卡尔曼滤波器可产生更高效的LS-EKF算法。所提出的方法充分利用EKF和Lebesgue采样的优势来减轻计算要求,并使其可以在大多数分布式FDP系统上进行部署。;通过对健康状况和RUL的估计进行的研究验证了所提出的所有方法。锂离子电池的预测。传统RS-FDP方法与LS-FDP方法的比较表明,LS-FDP对计算资源的要求低得多。提出的参数自适应和不确定性管理方法可以产生更准确,更精确的诊断和预后结果。这项研究开启了FDP方法的新篇章,并使得在由有限的计算资源和通信带宽限制的嵌入式子系统和微控制器构建的复杂系统上更容易部署FDP算法。

著录项

  • 作者

    Yan, Wuzhao.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Electrical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号