机译:用于实时锂离子电池诊断和预后的低成本自适应Lebesgue采样粒子滤波方法
Department of Electrical Engineering, University of South Carolina, Columbia, SC, USA;
Department of Electrical Engineering, University of South Carolina, Columbia, SC, USA;
Department of Computer Science and Technology, State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China;
Department of Automatic Test and Control, Harbin Institute of Technology, Harbin, China;
Department of Automatic Test and Control, Harbin Institute of Technology, Harbin, China;
Prognostics and health management; Real-time systems; Lithium-ion batteries; Monitoring; Fault diagnosis;
机译:利用低通滤波器实时诊断锂离子电池微短路
机译:基于Lebesgue采样的锂离子电池诊断和预后的不确定性管理
机译:基于Lebesgue采样的锂离子电池诊断和预后
机译:基于Lebesgue-时空模型和粒子滤波的诊断方法
机译:基于Lebesgue采样的诊断方法和预后方法在锂离子电池中的应用
机译:损伤诊断和预后的全自适应粒子过滤算法
机译:基于自适应Unscented卡尔曼滤波的锂离子电池故障诊断方法