首页> 外文期刊>IEEE transactions on automation science and engineering >Low-Cost Adaptive Lebesgue Sampling Particle Filtering Approach for Real-Time Li-Ion Battery Diagnosis and Prognosis
【24h】

Low-Cost Adaptive Lebesgue Sampling Particle Filtering Approach for Real-Time Li-Ion Battery Diagnosis and Prognosis

机译:用于实时锂离子电池诊断和预后的低成本自适应Lebesgue采样粒子滤波方法

获取原文
获取原文并翻译 | 示例

摘要

In the past decades, fault diagnosis and prognosis (FDP) approaches were developed in the Riemann sampling (RS) framework, in which samples are taken and algorithms are executed in periodic time intervals. With the increase of system complexity, a bottleneck of real-time implementation of RS-based FDP is limited calculation resources, especially for distributed applications. To overcome this problem, a Lebesgue sampling-based FDP (LS-FDP) is proposed. LS-FDP takes samples on the fault dimension axis and provides a need-based FDP philosophy in which the algorithm is executed only when necessary. In previous LS-FDP, the Lebesgue length is a constant. To accommodate the nonlinear fault dynamics, it is desirable to execute FDP algorithm more frequently when the fault growth is fast while less frequently when fault growth is slow. This requires to change the Lebesgue length adaptively and optimize the selection of Lebesgue length based on fault state and fault growth speed. The goal of this paper is to develop an improved LS-FDP method with adaptive Lebesgue length, which enables the FDP to be executed according to fault dynamics and has low cost in terms of computation and hardware resource needed. The design and implementation of adaptive LS-FDP (ALS-FDP) based on a particle filtering algorithm are illustrated with a case study of Li-ion batteries to verify the performances of the proposed approach. The experimental results show that ALS-FDP keeps close monitoring of fault growth and is accurate and time-efficient on long-term prognosis.
机译:在过去的几十年中,在黎曼采样(RS)框架中开发了故障诊断和预后(FDP)方法,在该框架中进行采样并以周期性的时间间隔执行算法。随着系统复杂度的增加,基于RS的FDP实时实施的瓶颈是有限的计算资源,尤其是对于分布式应用程序。为了克服这个问题,提出了基于Lebesgue采样的FDP(LS-FDP)。 LS-FDP在故障维轴上采样,并提供了基于需求的FDP原理,其中仅在必要时执行算法。在以前的LS-FDP中,Lebesgue长度是一个常数。为了适应非线性故障动态,希望在故障增长快时更频繁地执行FDP算法,而在故障增长慢时更不频繁地执行FDP算法。这要求自适应地改变Lebesgue长度,并基于故障状态和故障增长速度来优化Lebesgue长度的选择。本文的目的是开发一种改进的具有自适应Lebesgue长度的LS-FDP方法,该方法可使FDP根据故障动态执行,并且在计算和所需硬件资源方面具有较低的成本。以锂离子电池为例,说明了基于粒子滤波算法的自适应LS-FDP(ALS-FDP)的设计和实现,以验证该方法的性能。实验结果表明,ALS-FDP可以密切监视故障的发展,并且可以长期准确,及时地诊断故障。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号