首页> 外文期刊>Mechanical systems and signal processing >Diagonal slice spectrum assisted optimal scale morphological filter for rolling element bearing fault diagnosis
【24h】

Diagonal slice spectrum assisted optimal scale morphological filter for rolling element bearing fault diagnosis

机译:对角切片谱辅助最优尺度形态学滤波器的滚动轴承故障诊断

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel signal processing scheme, diagonal slice spectrum assisted optimal scale morphological filter (DSS-OSMF), for rolling element fault diagnosis. In this scheme, the concept of quadratic frequency coupling (QFC) is firstly defined and the ability of diagonal slice spectrum (DSS) in detection QFC is derived. The DSS-OSMF possesses the merits of depressing noise and detecting QFC. It can remove fault independent frequency components and give a clear representation of fault symptoms. A simulated vibration signal and experimental vibration signals collected from a bearing test rig are employed to evaluate the effectiveness of the proposed method. Results show that the proposed method has a superior performance in extracting fault features of defective rolling element bearing. In addition, comparisons are performed between a multi-scale morphological filter (MMF) and a DSS-OSMF. DSS-OSMF outperforms MMF in detection of an outer race fault and a rolling element fault of a rolling element bearing.
机译:本文提出了一种新颖的信号处理方案,对角切片频谱辅助最优尺度形态学滤波器(DSS-OSMF),用于滚动元件故障诊断。在此方案中,首先定义了二次频率耦合(QFC)的概念,并推导了对角切片频谱(DSS)在检测QFC中的能力。 DSS-OSMF具有降低噪声和检测QFC的优点。它可以消除与故障无关的频率分量,并清楚地表示故障症状。从轴承测试台收集的模拟振动信号和实验振动信号被用来评估所提方法的有效性。结果表明,该方法在提取有缺陷的滚动轴承故障特征方面具有优良的性能。另外,在多尺度形态学滤波器(MMF)和DSS-OSMF之间进行比较。在滚动轴承的外圈故障和滚动元件故障检测方面,DSS-OSMF优于MMF。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号