首页> 外文期刊>Mechanical systems and signal processing >Study on nature of crossover phenomena with application to gearbox fault diagnosis
【24h】

Study on nature of crossover phenomena with application to gearbox fault diagnosis

机译:交叉现象的性质研究及其在变速箱故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

Detrended Fluctuation Analysis (DFA) is a robust tool for uncovering long-range correlations hidden in the non-stationary data. Recently, crossover properties of the scaling-law curve obtained by DFA have been applied to diagnose gearbox faults. However, the nature of the crossover phenomena has not been well- explained. In this paper, an explanation for the nature of crossover phenomena is specifically given, which is conducive to discovering novel features for gearbox fault diagnosis. Firstly, an explicit exposition of the crossover phenomena is provided by analyzing the gearbox vibration signal. Secondly, the nature of crossover phenomena is specifically disclosed. Thirdly, the features with clear physical meaning are proposed to describe operating conditions of a gearbox. Then, to overcome the deficiency of feature extraction through visual observation, a piecewise-linear regression model is utilized to extract the features automatically. Lastly, several combinations of these features are used to classify the fault types. As a consequence, the proposed novel features are verified that they can well- distinguish the gearbox operating conditions with different fault types and severities, and deliver a better performance than the existing method depending on the sensitive index (SI).
机译:去趋势波动分析(DFA)是一种强大的工具,可揭示隐藏在非平稳数据中的远距离相关性。近来,由DFA获得的比例定律曲线的交叉特性已被用于诊断齿轮箱故障。但是,交叉现象的性质尚未得到很好的解释。在本文中,对交越现象的性质进行了具体说明,这有助于发现变速箱故障诊断的新颖特征。首先,通过分析变速箱振动信号,对交叉现象进行了明确的阐述。其次,具体公开了交叉现象的性质。第三,提出了具有清晰物理意义的特征来描述变速箱的工作条件。然后,为克服视觉观察特征提取的不足,利用分段线性回归模型自动提取特征。最后,使用这些功能的几种组合来对故障类型进行分类。结果,验证了所提出的新颖特征,它们可以很好地区分具有不同故障类型和严重程度的变速箱工况,并且根据敏感指数(SI)可以比现有方法提供更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号