首页> 外文期刊>Mechanical systems and signal processing >Research on feature extraction algorithm of rolling bearing fatigue evolution stage based on acoustic emission
【24h】

Research on feature extraction algorithm of rolling bearing fatigue evolution stage based on acoustic emission

机译:基于声发射的滚动轴承疲劳演化阶段特征提取算法研究

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on extracting effective evolution stage features of rolling bearing from the monitoring signal. Each feature has a different damage sensibility to different fatigue evolution stages. Fatigue evolution information is dispersed in different features, which increases the difficulty to recognize the fatigue stages. This paper presents a new feature extraction method for acoustic emission (AE) signal of rolling bearing to solve the problem, and a specially designed test rig is used for the experimental verification. The new method combines wavelet packet de-noising (WPD) with an improved kernel entropy component analysis (KECA). First, de-noising original signal by WPD method. Second, applying KECA method with Gaussian kernel function on the feature matrix extracted from the de-noised signal. A new particle swarm optimization method based on the best kernel entropy component number theory with inertia weight and dynamic accelerating constant (BWCPSO) is proposed to optimize the kernel parameter. BWCPSO method puts the minimized kernel entropy components number with the maximum stage information of rolling bearing as its objective. The optimal kernel parameter can make KECA method extract and converge the original signal information greatly. Finally, each fatigue evolution stage can be identified adaptively by the main kernel entropy score (KES) graphs. The experiment results show that the proposed method extracts the fatigue evolution stages information of rolling bearing effectively and much easier and more accuracy than the traditional feature trend analysis and other two traditional feature extraction methods.
机译:本文着重从监测信号中提取滚动轴承的有效演化阶段特征。每个特征对不同疲劳发展阶段的损伤敏感性都不同。疲劳演化信息分散在不同的特征中,这增加了识别疲劳阶段的难度。本文提出了一种解决滚动轴承声发射信号特征的新方法,并采用专门设计的试验台进行了实验验证。新方法将小波包消噪(WPD)与改进的核熵成分分析(KECA)相结合。首先,通过WPD方法对原始信号进行去噪。其次,将具有高斯核函数的KECA方法应用于从降噪信号中提取的特征矩阵。提出了一种基于最优核熵分量数理论的具有惯性权重和动态加速常数(BWCPSO)的粒子群优化算法。 BWCPSO方法将最小化的核熵分量数与滚动轴承的最大阶段信息作为目标。最优的内核参数可以使KECA方法极大地提取和收敛原始信号信息。最后,可以通过主核熵得分(KES)图自适应地识别每个疲劳演变阶段。实验结果表明,与传统特征趋势分析和其他两种传统特征提取方法相比,所提方法能有效,简便,准确地提取滚动轴承的疲劳演化阶段信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号