首页> 外文期刊>Mechanical systems and signal processing >Bayesian operational modal analysis of Jiangyin Yangtze River Bridge
【24h】

Bayesian operational modal analysis of Jiangyin Yangtze River Bridge

机译:江阴长江大桥贝叶斯操作模态分析。

获取原文
获取原文并翻译 | 示例

摘要

Vibration testing of long span bridges is becoming a commissioning requirement, yet such exercises represent the extreme of experimental capability, with challenges for instrumentation (due to frequency range, resolution and km-order separation of sensor) and system identification (because of the extreme low frequencies).The challenge with instrumentation for modal analysis is managing synchronous data acquisition from sensors distributed widely apart inside and outside the structure. The ideal solution is precisely synchronised autonomous recorders that do not need cables, GPS or wireless communication.The challenge with system identification is to maximise the reliability of modal parameters through experimental design and subsequently to identify the parameters in terms of mean values and standard errors. The challenge is particularly severe for modes with low frequency and damping typical of long span bridges. One solution is to apply ‘third generation’ operational modal analysis procedures using Bayesian approaches in both the planning and analysis stages.The paper presents an exercise on the Jiangyin Yangtze River Bridge, a suspension bridge with a 1385 m main span. The exercise comprised planning of a test campaign to optimise the reliability of operational modal analysis, the deployment of a set of independent data acquisition units synchronised using precision oven controlled crystal oscillators and the subsequent identification of a set of modal parameters in terms of mean and variance errors.Although the bridge has had structural health monitoring technology installed since it was completed, this was the first full modal survey, aimed at identifying important features of the modal behaviour rather than providing fine resolution of mode shapes through the whole structure. Therefore, measurements were made in only the (south) tower, while torsional behaviour was identified by a single measurement using a pair of recorders across the carriageway. The modal survey revealed a first lateral symmetric mode with natural frequency 0.0536 Hz with standard error ±3.6% and damping ratio 4.4% with standard error ±88%. First vertical mode is antisymmetric with frequency 0.11 Hz ± 1.2% and damping ratio 4.9% ± 41%.A significant and novel element of the exercise was planning of the measurement setups and their necessary duration linked to prior estimation of the precision of the frequency and damping estimates. The second novelty is the use of the multi-sensor precision synchronised acquisition without external time reference on a structure of this scale. The challenges of ambient vibration testing and modal identification in a complex environment are addressed leveraging on advances in practical implementation and scientific understanding of the problem.
机译:大跨度桥梁的振动测试已成为调试的要求,但是这种练习代表了极端的实验能力,并且在仪器(由于频率范围,分辨率和传感器的千米级间隔)和系统识别(由于极低的灵敏度)方面面临挑战。进行模态分析的仪器面临的挑战是管理从分布在结构内部和外部的传感器的同步数据采集。理想的解决方案是不需要电缆,GPS或无线通信的精确同步的自动记录器。系统识别面临的挑战是通过实验设计使模态参数的可靠性最大化,然后根据平均值和标准误差识别参数。对于低频率和大跨度电桥典型的阻尼模式,挑战尤其严峻。一种解决方案是在计划和分析阶段均采用贝叶斯方法应用“第三代”运行模态分析程序。本文介绍了江阴长江大桥(主跨为1385 m的悬索桥)的演习。演习包括计划一个测试活动以优化操作模式分析的可靠性,部署一组独立的数据采集单元,这些单元使用精密的恒温晶体振荡器进行同步,随后根据均值和方差确定一组模式参数尽管桥梁自建成以来就已经安装了结构健康监测技术,但这是第一次全面的模态调查,旨在确定模态行为的重要特征,而不是在整个结构中提供模态形状的精细分辨率。因此,仅在(南)塔中进行测量,而扭转行为则通过使用横跨行车道的一对记录仪进行的一次测量来识别。模态测量显示了第一侧向对称模式,其固有频率为0.0536 Hz,标准误差为±3.6%,阻尼比为4.4%,标准误差为±88%。第一种垂直模式是反对称的,频率为0.11 Hz±1.2%,阻尼比为4.9%±41%。演习的一个重要且新颖的元素是计划测量设置,其必要的持续时间与事先估算的频率精度有关。阻尼估计。第二个新颖之处是在这种规模的结构上无需外部时间参考的情况下使用多传感器精确同步采集。利用实际实施中的进展和对问题的科学理解,可以解决复杂环境中的环境振动测试和模态识别所面临的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号