首页> 外文期刊>Mechanical systems and signal processing >Mass detection, localization and estimation for wind turbine blades based on statistical pattern recognition
【24h】

Mass detection, localization and estimation for wind turbine blades based on statistical pattern recognition

机译:基于统计模式识别的风机叶片质量检测,定位和估计

获取原文
获取原文并翻译 | 示例

摘要

A method for mass change detection on wind turbine blades using natural frequencies is presented. The approach is based on two statistical tests. The first test decides if there is a significant mass change and the second test is a statistical group classification based on Linear Discriminant Analysis. The frequencies are identified by means of Operational Modal Analysis using natural excitation. Based on the assumption of Gaussianity of the frequencies, a multi-class statistical model is developed by combining finite element model sensitivities in 10 classes of change location on the blade, the smallest area being 1/5 of the span. The method is experimentally validated for a full scale wind turbine blade in a test setup and loaded by natural wind. Mass change from natural causes was imitated with sand bags and the algorithm was observed to perform well with an experimental detection rate of 1, localization rate of 0.88 and mass estimation rate of 0.72.
机译:提出了一种利用固有频率检测风力涡轮机叶片质量变化的方法。该方法基于两个统计检验。第一个测试确定是否存在明显的质量变化,第二个测试是基于线性判别分析的统计组分类。通过使用自然激励的运行模态分析来识别频率。基于频率的高斯性假设,通过将叶片上10种变化位置类别中的有限元模型敏感度进行组合来开发多类统计模型,最小面积为跨度的1/5。该方法在测试设置中针对全尺寸风力涡轮机叶片进行了实验验证,并通过自然风加载。用沙袋模拟自然原因引起的质量变化,并观察到该算法性能良好,实验检测率为1,定位率为0.88,质量估计率为0.72。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号