首页> 外文期刊>Mechanical systems and signal processing >Data-driven analytical load rating method of bridges using integrated bridge structural response and weigh-in-motion truck data
【24h】

Data-driven analytical load rating method of bridges using integrated bridge structural response and weigh-in-motion truck data

机译:使用集成桥结构响应和称重卡车数据的桥梁数据驱动分析额定值

获取原文
获取原文并翻译 | 示例

摘要

Load rating is a widely used approach for evaluating the load-carrying capacity of bridges in an effort to ensure safe bridge operation under expected traffic loads. Load rating often relies on simplified analytical models including empirically derived model parameters that do not reflect bridge-specific information resulting in conservative ratings. To reduce this conservatism, this study proposes a novel data-driven framework that utilizes long-term bridge response data to extract bridge-specific model parameters that can be used within in the Load and Resistance Factor Rating (LRFR) process. The data-driven LRFR (DD-LRFR) framework is empowered by a cyber-physical system (CPS) architecture that uses Internet connectivity to integrate measured bridge responses with truck weights measured by a weigh-in-motion (WIM) station. The CPS architecture uses computer vision of camera images to confirm trucks observed at a WIM station are identical to those observed at a bridge. Bridge response and axle weight data are then used to extract probabilistic models of dynamic load allowances and unit influence lines. The DD-LRFR method is validated using a 20-mile (32.2-km) segment of the 1-275 northbound highway in Michigan that is monitored continuously by the CPS architecture. Six girders associated with two bridges along 1-275 are rated using the proposed DD-LRFR methodology with rating factors compared to those obtained using conventional and refined load rating methods. The DD-LRFR method yields inventory- and operational-level rating factors that are less conservative than those from the approximate LRFR method and comparable to those using finite element modeling of the bridge.
机译:负载额定值是一种广泛使用的方法,用于评估桥梁的承载能力,以确保在预期的交通负荷下的安全桥操作。负载等级通常依赖于简化的分析模型,包括未反映桥接特定信息的经验衍生的模型参数,导致保守评级。为了减少这种保守主义,本研究提出了一种新的数据驱动框架,该框架利用长期桥梁响应数据来提取可以在负载和电阻因子额定值(LRFR)过程内的桥接特定的模型参数。数据驱动的LRFR(DD-LRFR)框架由网络物理系统(CPS)架构赋权,该架构使用互联网连接与通过称重运动(WIM)站测量的卡车重量集成测量的桥接响应。 CPS架构使用相机图像的计算机愿景来确认在WIM站观察到的卡车与在桥上观察到的卡车相同。然后,桥梁响应和轴重量数据用于提取动态负载津贴和单元影响线的概率模型。使用CPS架构不断监控的密歇根州1-275北行高速公路,使用20英里(32.2 km)段验证了DD-LRFR方法。与使用常规和精制负载额定方法获得的那些,使用所提出的DD-LRFR方法额定与沿1-275沿1-275相关的六个梁。 DD-LRFR方法产生的库存和操作级别额定因子,这些级别额定值比近似LRFR方法的保守率较少,并且与使用桥梁的有限元建模的人相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号