首页> 外文期刊>Mechanical systems and signal processing >Digital clone testing platform for the assessment of SHM systems under uncertainty
【24h】

Digital clone testing platform for the assessment of SHM systems under uncertainty

机译:数字克隆测试平台,用于评估SHM系统的不确定性

获取原文
获取原文并翻译 | 示例

摘要

The performance of a Structural Health Monitoring (SHM) system can be assessed using Probability of Detection (PoD) curves, which is a common tool for the evaluation of Non-Destructive Testing (NDT) methods. This study presents a novel digital clone platform to quantify and account for uncertainties that can be detrimental to the reliability of a SHM system. Uncertainties relating to experimental measurement noise and Environmental and Operational Conditions (EOC) are considered during the definition of a threshold value that aims at reliably distinguishing between pristine and damaged signals. At the same time, the variability of impact damage characteristics and uncertainties associated with Lamb waves interaction in composites are captured though the Bayesian calibration of a Finite Element (FE) model using experimental observations. The FE model is integrated within the digital clone testing platform to substitute the experimental testing and generate a statistical sample of distributed impact events at different locations on a composite plate and compute the Model Assisted Probability of Detection (MAPOD). This approach allows the estimation of the system's performance under different EOC that can be used during the selection and operation of a specific SHM configuration.
机译:可以使用检测概率(POD)曲线来评估结构健康监测(SHM)系统的性能,这是评估非破坏性测试(NDT)方法的常用工具。本研究提出了一种新型数字克隆平台,用于量化和算解可能对SHM系统的可靠性有害的不确定性。在定义阈值期间考虑有关实验测量噪声和环境和操作条件(EOC)的不确定性,其旨在可靠地区分原子和损坏的信号。同时,捕获了使用实验观察的有限元(Fe)模型的贝叶斯校准,捕获了与羊波波浪相关复合材料中的抗冲击损伤特性和不确定性的变化。 FE模型集成在数字克隆测试平台内,以替代实验测试,并在复合板上的不同位置产生分布式冲击事件的统计样本,并计算辅助检测概率(Mapod)。这种方法允许在不同的EoC下估计系统的性能,可以在特定SHM配置的选择和操作期间使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号