首页> 外文期刊>Mechanical systems and signal processing >Wind data extrapolation and stochastic field statistics estimation via compressive sampling and low rank matrix recovery methods
【24h】

Wind data extrapolation and stochastic field statistics estimation via compressive sampling and low rank matrix recovery methods

机译:通过压缩采样和低秩矩阵恢复方法的风数据外推和随机现场统计估计

获取原文
获取原文并翻译 | 示例

摘要

A methodology based on compressive sampling is developed for incomplete wind time-histories reconstruction and extrapolation in a single spatial dimension, as well as for related stochastic field statistics estimation. This relies on l_1-norm minimization in conjunction with an adaptive basis re-weighting scheme. Indicatively, the proposed methodology can be employed for monitoring of wind turbine systems, where the objective relates to either reconstructing incomplete time-histories measured at specific points along the height of a turbine tower, or to extrapolating to other locations in the vertical dimension where sensors and measurement records are not available. Further, the methodology can be used potentially for environmental hazard modeling within the context of performance-based design optimization of structural systems. Unfortunately, a straightforward implementation of the aforementioned approach to account for two spatial dimensions is hindered by significant, even prohibitive in some cases, computational cost. In this regard, to address computational challenges associated with higher-dimensional domains, a methodology based on low rank matrices and nuclear norm minimization is developed next for wind field extrapolation in two spatial dimensions. The efficacy of the proposed methodologies is demonstrated by considering various numerical examples. These refer to reconstruction of wind time-histories with missing data compatible with a joint wavenumber-frequency power spectral density, as well as to extrapolation to various locations in the spatial domain.
机译:基于压缩采样的方法是为单个空间尺寸的不完全风时间历史重建和外推的基于压缩采样的方法,以及相关随机现场统计估计。这依赖于L_1-NOM最小化与自适应基础重新加权方案结合。另称,所提出的方法可以用于监测风力涡轮机系统,其中目的涉及重建在沿涡轮机塔的高度的特定点处测量的不完全时间历史,或者将传感器的垂直尺寸的其他位置推断到其他位置和测量记录不可用。此外,该方法可以在结构系统的基于性能的设计优化的背景下潜在地用于环境危害建模。遗憾的是,在某些情况下显着,甚至令人遗憾地阻碍了上述方法的前述方法的直接实现。在这方面,为了解决与高维结构域相关的计算挑战,接下来在两个空间尺寸下进行基于低等级基质和核规范最小化的方法。通过考虑各种数值例子来证明所提出的方法的功效。这些是指随着与关节波数 - 频率功率谱密度兼容的缺失数据的重建,以及外推到空间域中的各个位置。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2022年第1期|107975.1-107975.15|共15页
  • 作者单位

    Institute for Risk and Reliability Leibniz Universitaet Hannover Hannover Germany;

    Earthquake Engineering and Structural Dynamics Laboratory (EESD) Ecole Polytechnique Federate de Lausanne (EPFL) Lausanne Switzerland;

    Department of Civil Engineering and Engineering Mechanics Columbia University New York NY United States;

    Institute for Risk and Reliability Leibniz Universitaet Hannover Hannover Germany Institute for Risk and Uncertainty and School of Engineering University of Liverpool Liverpool United Kingdom InternationalJoint Research Center for Engineering Reliability and Stochastic Mechanics Tongji University Shanghai China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wind data; Stochastic field; Sparse representations; Compressive sampling; Low-rank matrix;

    机译:风数据;随机田地;稀疏的表示;压缩抽样;低级矩阵;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号