首页> 外文期刊>Mechanical systems and signal processing >Advanced optimal sensor placement for Kalman-based multiple-input estimation
【24h】

Advanced optimal sensor placement for Kalman-based multiple-input estimation

机译:基于卡尔曼的多输入估计的高级最佳传感器放置

获取原文
获取原文并翻译 | 示例

摘要

The direct measurement of the external loads acting on a mechanical component represents often a challenge in many engineering applications. In this context, the attention of many researchers is focused on the field of inverse load identification. Several techniques are proposed in literature to address this problem by means of experimental methodologies, often coupled with simulation solutions. In this paper, a Kalman-based methodology is considered, which solves the problem of inverse load identification in a predictive manner. The common issue of most of the techniques is the selection of an optimal set of sensors which gives the best load estimation. In the Kalman-filtering framework, an Optimal Sensor Placement (OSP) strategy has been proposed by the authors and it aims to find the best set of sensors in terms of system observability, which is the minimum requirement of a stable estimation. However, this does not guarantee the most accurate load estimation. In this contribution, two alternative metrics are proposed, based on: i) steady-state error covariance of the estimation, ii) estimator bandwidth, with respect to the available set of measurements. Both criteria will be included in the existing OSP to improve the sensors selection. A comparison of the three strategies for multiple input/state estimation is discussed on an industrial-scale Finite Element Model, in order to show the improvement in the accuracy of the estimated quantities.
机译:作用在机械部件上的外部载荷的直接测量代表许多工程应用中的挑战。在这种情况下,许多研究人员的注意力集中在逆负荷识别领域。在文献中提出了几种技术来通过实验方法解决这个问题,通常与模拟解决方案相结合。本文认为,基于卡尔曼的方法,其解决了以预测方式解决逆负荷识别的问题。大多数技术的常见问题是选择最佳的传感器,其提供最佳负载估计。在卡尔曼过滤框架中,作者提出了最佳的传感器放置(OSP)策略,并旨在在系统可观察性方面找到最佳的传感器,这是稳定估计的最低要求。但是,这并不保证最准确的负载估计。在本贡献中,基于以下方式:i)提出了两个替代度量,基于:i)估计,ii)估计的稳态误差协方差,估计器带宽关于可用的测量集。两个标准都将包含在现有OSP中以改善传感器选择。在工业规模的有限元模型上讨论了对多输入/状态估计的三种策略的比较,以显示估计量的准确性的提高。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2021年第11期|107830.1-107830.26|共26页
  • 作者单位

    Siemens Digital Industries Software Interleuvenlaan 68 3001 Leuven Belgium KU Leuven Department of Mechanical Engineering Celestijnenlaan 300 B 3001 Heverlee Belgium;

    Siemens Digital Industries Software Interleuvenlaan 68 3001 Leuven Belgium KU Leuven Department of Mechanical Engineering Celestijnenlaan 300 B 3001 Heverlee Belgium University of Ferrara Engineering Department Via Ariosto 35 44121 Ferrara Italy;

    Siemens Digital Industries Software Interleuvenlaan 68 3001 Leuven Belgium KU Leuven Department of Mechanical Engineering Celestijnenlaan 300 B 3001 Heverlee Belgium;

    Siemens Digital Industries Software Interleuvenlaan 68 3001 Leuven Belgium;

    KU Leuven Department of Mechanical Engineering Celestijnenlaan 300 B 3001 Heverlee Belgium DMMS core lab Flanders Make Belgium;

    KU Leuven Department of Mechanical Engineering Celestijnenlaan 300 B 3001 Heverlee Belgium DMMS core lab Flanders Make Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Augmented Kalman Filter; Inverse load identification; Optimal Sensor Placement; Steady-state error covariance; Estimator bandwidth; Observability;

    机译:增强卡尔曼滤波器;逆负荷识别;最佳传感器放置;稳态误差协方差;估计带宽;可观察性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号