首页> 外文期刊>Mechanical systems and signal processing >An artificial neural network methodology for damage detection: Demonstration on an operating wind turbine blade
【24h】

An artificial neural network methodology for damage detection: Demonstration on an operating wind turbine blade

机译:一种用于损伤检测的人工神经网络方法:操作风力涡轮机叶片上的示范

获取原文
获取原文并翻译 | 示例

摘要

This study presents a novel artificial neural network (ANN) based methodology within a vibration-based structural health monitoring framework for robust damage detection. The ANN-based methodology establishes the nonlinear relationships between selected damage sensitive features (DSF) influenced by environmental and operational variabilities (EOVs) and their corresponding novelty indices computed by the Mahalanobis distance (MD). The ANN regression model is trained and validated based on a reference state (i.e., a healthy structure). The trained model is used to predict the corresponding MD of new observations. The prediction error between the calculated and predicted MD is used as a new novelty index for damage detection. Firstly, an artificial 2D feature set is generated to illustrate how the limitations of solely using the MD-based novelty index can be overcome by the proposed ANN-based methodology. Secondly, the methodology is implemented in data obtained from an in-operation wind turbine with different artificially induced damage scenarios in one of its blades. Finally, the performance of the proposed methodology is evaluated by the metrics of accuracy, F1-score and Matthews correlation coefficient. The results demonstrate the advantages of the proposed methodology by improving damage detectability in all the different damage scenarios despite the influence of EOVs in both the simulated and real data.
机译:本研究提出了一种基于振动的结构健康监测框架的基于新的人工神经网络(ANN)方法,用于鲁棒损伤检测。基于ANN的方法建立了由环境和运营变量(EOV)影响的选定损伤敏感特征(DSF)之间的非线性关系及其由Mahalanobis距离(MD)计算的相应新颖性指数。基于参考状态(即,健康结构)培训并验证了ANN回归模型。训练模型用于预测新观察的相应MD。计算和预测MD之间的预测误差用作损坏检测的新新颖性指标。首先,生成人工2D特征集以说明可以通过所提出的基于ANN的方法来克服单独使用基于MD的新颖性指数的限制。其次,该方法在其在其一个刀片中的具有不同人工诱导的损伤场景获得的数据中实现。最后,通过精度,F1分数和马修斯相关系数的度量来评估所提出的方法的性能。尽管EOV在模拟和实际数据中影响了所有不同损伤情景,所以结果证明了所提出的方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号