首页> 外文期刊>Mechanical systems and signal processing >Vectorization and distributed parallelization of Bayesian model updating based on a multivariate complex-valued probabilistic model of frequency response functions
【24h】

Vectorization and distributed parallelization of Bayesian model updating based on a multivariate complex-valued probabilistic model of frequency response functions

机译:贝叶斯模型更新的矢量化与分布式并行化基于多元复合概率模型的频率响应函数

获取原文
获取原文并翻译 | 示例

摘要

This study was devoted to investigating stochastic model updating in a Bayesian inference framework based on a frequency response function (FRF) vector without any post-processing such as smoothing and windowing. The statistics of raw FRFs were inferred with a multivariate complex-valued Gaussian ratio distribution. The likelihood function was formulated by embedding the theoretical FRFs that contained the model parameters to be updated in the class of the probability model of the raw FRFs. The Transitional Markov chain Monte Carlo (TMCMC) used to sample the posterior probability density func-tion implies considerable computational toll because of the large batch of repetitive anal-yses of the forward model and the increasing expense of the likelihood function calculations with large-scale loop operations. The vectorized formula was derived analyt-ically to avoid time-consuming loop operations involved in the likelihood function evalu-ation. Furthermore, a distributed parallel computing scheme was developed to allow the TMCMC stochastic simulation to run across multiple CPU cores on multiple computers in a network. The case studies demonstrated that the fast-computational scheme could exploit the availability of high-performance computing facilities to drastically reduce the time-to-solution. Finally, parametric analysis was utilized to illustrate the uncertainty propagation properties of the model parameters with the variations of the noise level, sam-pling time, and frequency bandwidth.
机译:本研究致力于根据频率响应函数(FRF)向量,调查在贝叶斯推理框架中更新的随机模型更新,而无需任何后处理,例如平滑和窗口。使用多元复合高斯高斯比例分布推断出原料FRF的统计数据。通过嵌入包含在原始FRF的概率模型的类中更新的理论FRF来制定似然函数。用于对后验概率密度的过渡性Markov链蒙特卡罗(TMCMC)由于前向模型的批量批量肛交,并且具有大规模的似然函数计算的额外牺牲增加而导致相当大的计算损失循环操作。将载体化公式进行分析,以避免涉及似然函数评估中涉及的耗时的循环操作。此外,开发了一种分布式并行计算方案,以允许TMCMC随机仿真在网络中的多台计算机上跨多个CPU核心运行。案例研究表明,快速计算方案可以利用高性能计算设施的可用性,以大大减少解决时间。最后,利用参数分析来说明模型参数的不确定性传播特性,具有噪声水平,示踪时间和频率带宽的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号