首页> 外文OA文献 >An Improved Finite Element Model Updating Method Based on the Singular Values of Frequency Response Functions
【2h】

An Improved Finite Element Model Updating Method Based on the Singular Values of Frequency Response Functions

机译:一种改进的基于频率响应函数奇异值的有限元模型更新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aiming at the problems that Markov chain Monte Carlo algorithm is not easy to converge, has high rejection rate, and is easy to be disturbed by the noise when the parameter dimension is high, an improved model updating method combining the singular values of frequency response functions and the beetle antennae search algorithm is proposed. Firstly, the Latin hypercube sampling is used to extract the training samples. The Hankel matrix is reconstructed using the calculated frequency response functions and is decomposed by singular value decomposition. The effective singular values are retained to represent the frequency response functions. Secondly, according to the training samples and the corresponding singular values, the support vector machine surrogate model is fitted and its accuracy is tested. Then, the posterior probability distribution of parameters is estimated by introducing the beetle antennae search algorithm on the basis of standard Metropolis–Hastings algorithm to improve the performance of Markov chains and the ergodicity of samples. The results of examples show that the Markov chains have better overall performance and the acceptance rate of candidate samples is increased after updating. Even if the Gaussian white noise is introduced into the test frequency response functions under the single and multiple working damage conditions, satisfactory updating results can also be obtained.
机译:针对马尔可夫链Monte Carlo算法不易收敛的问题,具有高的抑制率,并且当参数尺寸高时,噪声易于干扰,改进了频率响应函数奇异值的模型更新方法提出了甲虫天线搜索算法。首先,拉丁超立体采样用于提取培训样本。使用计算出的频率响应函数重建Hankel矩阵,并通过奇异值分解进行分解。保留有效的奇异值以表示频率响应函数。其次,根据训练样本和相应的奇异值,安装了支撑载体机代理模型,并测试了其精度。然后,通过基于标准的大都市 - Hastings算法引入甲虫天线搜索算法来估计参数的后验概率分布,以提高Markov链的性能和样品的遍历性。实施例的结果表明,马尔可夫链具有更好的整体性能,更新后候选样品的验收率增加。即使高斯白噪声在单个和多个工作损坏条件下引入测试频率响应函数,也可以获得满意的更新结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号