首页> 外文期刊>Mechanical systems and signal processing >A kNN algorithm for locating and quantifying stiffness loss in a bridge from the forced vibration due to a truck crossing at low speed
【24h】

A kNN algorithm for locating and quantifying stiffness loss in a bridge from the forced vibration due to a truck crossing at low speed

机译:一种KNN算法,用于在低速卡车交叉时从强制振动中定位和量化桥梁刚度损失

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a k-Nearest Neighbours (kNN) algorithm for locating and quantifying bridge damage based on the time-varying forced frequencies due to a moving truck. Eigenvalue analysis of a simplified vehicle-bridge coupled system, consisting of a three-axle rigid truck model and a simply supported finite element beam model, shows how the eigenfrequencies of the coupled system vary with the locations of the vehicle and with the damage represented by a stiffness loss. The computational efficiency of eigenvalue analysis is exploited to generate a vast sample of patterns for training a kNN algorithm. In the field, acceleration due to the crossing of a test vehicle would be measured and analysed using a time-frequency signal processing tool to obtain the instantaneous frequencies. The crossing must take place at a low speed to achieve sufficiently high resolution and to minimise deviations from the eigenvalue solution. Then, the kNN algorithm searches for the patterns of forced eigenfrequencies that are closest to the on-site instantaneous frequencies to determine the location and severity of the damage. For theoretical testing purposes, field measurements are simulated here using coupled equations of motion and dynamic transient analysis.
机译:本文提出了一种用于基于移动卡车引起的时变强制频率定位和量化桥梁损伤的K最近邻居(KNN)算法。简化车桥耦合系统的特征值分析,由三轴刚性卡车模型和简单支持的有限元梁模型组成,显示了耦合系统的特征频率如何随着车辆的位置和所代表的损坏而变化僵硬损失。利用特征值分析的计算效率,以产生用于训练KNN算法的广泛模式样本。在该领域中,使用时频信号处理工具测量和分析由于测试车辆的交叉而导致的加速度,以获得瞬时频率。交叉路口必须以低速进行以达到足够高的分辨率,并尽量减少与特征值溶液的偏差。然后,KNN算法搜索最接近现场瞬时频率的强制特征频道的模式,以确定损坏的位置和严重程度。出于理论测试目的,这里使用耦合的运动方程和动态瞬态分析模拟现场测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号