首页> 外文期刊>Mechanical systems and signal processing >Adjusting a torsional vibration damper model with physics-informed neural networks
【24h】

Adjusting a torsional vibration damper model with physics-informed neural networks

机译:用物理信息神经网络调整扭力减振模型

获取原文
获取原文并翻译 | 示例

摘要

In this work, we implement a framework for adjusting the outputs of a torsional vibration damper (TVD) model to experimental data using physics-informed neural networks. TVDs are devices used to passively control vibration; and here are commonly modeled through reduced-order physics. Within the TVD model, the material properties of the viscoelastic rubber used in the device are characterized through previously performed coupon tests. Even so, when the TVD is experimentally tested, there are significant discrepancies in the frequency response function (FRF), due to simplifications and model assumptions. Here, we implement the FRF as a deep neural network using a direct graph. The model elements, such as storage and loss moduli, stiffness and damping coefficients are nodes of this graph. Then, we add data-driven nodes (implemented as multilayer perceptrons) to correct the outputs of the stiffness and damping coefficients. This way, the gap between predicted and observed FRF can be closed. With this framework, we can build hybrid models that merge the original computer model (or at least, a reduced-order representation of it) with the neural network through a graph. This allows us to estimate the model-form uncertainty even for hidden nodes of the graph. In the TVD application, we studied the performance of our framework both in interpolation (when the model predicts the FRF between observations) and extrapolation (when the model predicts the FRF outside the observation range). The results demonstrate the ability to perform simultaneous estimation of discrepancy at reasonable computational cost.
机译:在这项工作中,我们利用物理信息的神经网络实施了一种用于将扭转减振器(TVD)模型的输出调整到实验数据的框架。 TVDS是用于被动控制振动的设备;这里通常通过缩小的物理学建模。在TVD模型中,通过先前执行的优惠券测试表征了该装置中使用的粘弹性橡胶的材料特性。即便如此,当实验测试TVD时,由于简化和模型假设,频率响应函数(FRF)存在显着差异。在这里,我们使用直接图形实现FRF作为深度神经网络。诸如存储和损耗模数,刚度和阻尼系数的模型元素是该图的节点。然后,我们添加数据驱动的节点(实现为多层erceptrons)以校正刚度和阻尼系数的输出。这样,可以关闭预测和观察到的FRF之间的间隙。通过此框架,我们可以通过图形构建与神经网络合并与神经网络合并原始计算机模型(或至少阶数表示)的混合模型。这允许我们估计即使对于图表的隐藏节点,也可以估计模型形式的不确定性。在TVD应用程序中,我们研究了我们的框架在插值中的性能(当模型预测观察之间的FRF)和外推时(当模型预测观察范围外的FRF时)。结果证明了以合理的计算成本执行同时估算差异的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号