...
首页> 外文期刊>Mechanical systems and signal processing >Shape sensing and damage identification with iFEM on a composite structure subjected to impact damage and non-trivial boundary conditions
【24h】

Shape sensing and damage identification with iFEM on a composite structure subjected to impact damage and non-trivial boundary conditions

机译:用影响损伤和非平凡边界条件的复合结构对IFEM的形状传感和损伤识别

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The inverse Finite Element Method (iFEM) has recently demonstrated to be a valuable tool, not only for shape sensing, but also for damage identification in a Structural Health Monitoring framework. The algorithm computes the displacement field, and consequently the strain field, based on discrete input strain measures in the structure without any a-priori knowledge of the material properties or the loading condition. In particular, the reconstruction is obtained by a least-squares minimization of an error functional defined by comparing the experimental strain measures with their numerical formulation, function of the displacements. Even though the formulation of the method is general for any arbitrary geometry and constraints, the definition of the correct boundary conditions is not trivial for structures subjected to non-ideal constraints. Thus, the work proposes a super-imposition of the effects approach to weight the contribution of different basic models to simulate the real behavior of the structure. Once the component displacement and strain fields are correctly reconstructed, the structural assessment is performed by means of a load-independent anomaly index based on the comparison of the numerical strain reconstructions and their experimental counterparts. The discrepancies with respect to a load-independent baseline are highlighted by a Mahalanobis distance index. The procedure is experimentally verified on a CFRP reinforced panel subjected to impact damage and a compressive fatigue test.
机译:逆有限元方法(IFEM)最近证明是一种有价值的工具,不仅用于形状感测,而且还用于结构健康监测框架中的损坏识别。该算法基于结构中的离散输入应变度量来计算位移字段,从而计算应变字段,而无需任何先验的材料属性或加载条件。特别地,通过将​​通过比较其数值配方的实验性应变措施比较,流离失所的功能来实现重建通过最小化误差函数的最小化。即使该方法的配方对于任何任意几何和约束是通用的,对于非理想约束的结构而言,正确的边界条件的定义是不普遍的。因此,该工作提出了一种超级施加的效果方法来重量不同基本模型的贡献来模拟结构的真实行为。一旦正确重建了组分位移和应变场,就通过基于数值应变重建及其实验对应物的比较来通过负载无关的异常指数进行结构评估。 Mahalanobis距离指数突出了关于负载独立基线的差异。在经过冲击损伤和压缩疲劳试验的CFRP强化面板上进行实验验证该程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号