首页> 外文期刊>Mechanical systems and signal processing >Optimal sensor placement using data-driven sparse learning method with application to pattern classification of hypersonic inlet
【24h】

Optimal sensor placement using data-driven sparse learning method with application to pattern classification of hypersonic inlet

机译:利用数据驱动稀疏学习方法进行最佳传感器放置,以应用于超声入口的图案分类

获取原文
获取原文并翻译 | 示例

摘要

Placing the right amount of sensors in key locations is critical for system monitoring. In real applications, the determination of sensor placement is a compromise between monitoring performance and the costs of installation and maintenance. Given the well-interpretability of sparse learning, this paper proposes an efficient data-driven method to obtain the optimal sensor subset from the entire candidate sensor set. In order to make our model more robust to outliers and overcome the limitation of inconsistent coefficients for multiple class optimization problem, our proposed method introduces a special norm to realize the similar sparse structures of coefficients. Considering that the redundant data cannot effectively improve the real-time condition monitoring performance of engineering systems, our proposed method also includes a redundant information elimination model, which is rarely investigated in data-driven methods for optimal sensor placement problem, and this elimination model is designed by exploring the diversity of measurement data of different sensors. What's more, we provide an alternating iteration algorithm to solve the non-smoothness convex problem of our proposed data-driven method, and the proof of its convergence has also been presented. The optimal sensor subset can be determined by the rank of the coefficients obtained by the alternating iteration algorithm. Finally, the effectiveness and feasibility of our proposed method are verified by a large number of experiments, including validation experiments on benchmark data sets and a real engineering example on the inlet model of hypersonic aircraft engine.
机译:在关键位置放置适量的传感器对于系统监控至关重要。在实际应用中,传感器放置的确定是在监控性能和安装和维护成本之间的折衷。鉴于稀疏学习的良好解释性,本文提出了一种有效的数据驱动方法,以获得来自整个候选传感器集的最佳传感器子集。为了使我们的模型更加强大地对异常值并克服多个类优化问题的不一致系数的限制,我们所提出的方法引入了实现类似系数稀疏结构的特殊规范。考虑到冗余数据不能有效地改善工程系统的实时条件监测性能,我们所提出的方法还包括冗余信息消除模型,其在数据驱动方法中很少被研究,以获得最佳传感器放置问题,并且这种消除模型是通过探索不同传感器的测量数据的多样性来设计。更重要的是,我们提供了一个交替的迭代算法来解决我们所提出的数据驱动方法的非平滑度凸面问题,并且还提出了其收敛的证明。最佳传感器子集可以由通过交替迭代算法获得的系数的等级来确定。最后,通过大量实验验证了我们所提出的方法的有效性和可行性,包括基准数据集的验证实验和超声波飞机发动机入口模型的实际工程示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号