首页> 外文期刊>Mechanical systems and signal processing >Adaptive Kalman filter-based information fusion in electrical impedance tomography for a two-phase flow
【24h】

Adaptive Kalman filter-based information fusion in electrical impedance tomography for a two-phase flow

机译:基于自适应卡尔曼滤波器的电气阻抗断层扫描的信息融合,用于两相流

获取原文
获取原文并翻译 | 示例

摘要

Electrical impedance tomography (EIT) is a severely ill-posed nonlinear inverse problem. In order to obtain solutions with physical meaning, the inverse of the model of measurements requires the combination of information from various sources. This paper proposes a new approach through Kalman filtering for adaptive integration of EIT measurements, Tikhonov regularization and evolution models for the characterization of a two-phase air-water fluid flow. The Tikhonov regularization factor is embedded into the observation error covariance matrix, thus allowing for individual adjustment for each of the regularization equations. The filter outputs for different evolution models-random walk, advective and advective-diffusive-are compared in terms of estimate convergence and physical meaning. With the random walk evolution model the analysis of experimental data shows that the proposed information fusion strategy provides fewer artifacts, enabling a more effective identification of the phase interfaces. When the other two evolution models are incorporated into the Kalman filter and compared with the random walk model, faster and more accurate estimates of the flow are obtained even away from the electrodes, as well as sharper phase interfaces are identified. The results suggest that the reason for this improved performance is the fused information from the upstream-downstream dynamics of the advective and advective-diffusive models with the outer-inner structure influence of measurements.
机译:电阻抗断层扫描(EIT)是一个严重均不为不良的非线性逆问题。为了获得具有物理意义的解决方案,测量模型的倒数需要来自各种来源的信息的组合。本文通过Kalman滤波提出了一种新方法,用于EIT测量,Tikhonov正规和演化模型的适应性集成,用于表征两相空水流体流动。 Tikhonov正则化因子嵌入到观察误差协方差矩阵中,从而允许对每个正则化方程的各个调整。在估计会聚和物理意义上比较不同演进模型随机步行的过滤器输出。随着随机步行演进模型,实验数据的分析表明,所提出的信息融合策略提供了更少的伪像,使得更有效地识别相位接口。当另外两个演化模型结合到卡尔曼滤波器中并与随机步道模型进行比较,即使远离电极也可以获得更快,更精确的流动估计,以及识别更清晰的相位界面。结果表明,这种改进的性能的原因是来自上游下游动态的融合信息,方向于和平面扩散模型的上游动态,具有测量的外内部结构影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号