首页> 外文期刊>Mechanical systems and signal processing >Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery
【24h】

Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery

机译:基于深度代表聚类的故障诊断方法与旋转机械施加无监督数据

获取原文
获取原文并翻译 | 示例

摘要

Despite the recent advances on intelligent data-driven machinery fault diagnostics, large amounts of high-quality supervised data are mostly required for model training. However, it is usually difficult and expensive to collect sufficient labeled data in real industries, and the difficulty in data preparation significantly hinders the application of the intelligent diagnostic methods. In order to address the data sparsity issue with insufficient labeled data, a deep learning-based fault diagnosis method is proposed in this study, exploring additional unsupervised data which are generally easy for collection. A three-stage training scheme is adopted, i.e. pre-training, representation clustering and enhanced supervised learning. The auto-encoder structure is used for feature extraction, and distance metric learning and k-means clustering method are integrated in the neural network architecture for unsupervised learning. Two rotating machinery datasets are used for validations. The proposed method not only achieves promising diagnostic performance on the semi-supervised learning tasks with few labeled data, but also is well suited for pure unsupervised learning problems. The experimental results suggest the proposed method offers a promising approach on exploiting unsupervised data for fault diagnostics.
机译:尽管近期有关智能数据驱动的机械故障诊断的进展,但模型培训主要需要大量的高质量监督数据。然而,通常难以且昂贵的是在真实行业中收集足够的标记数据,数据准备难度显着阻碍了智能诊断方法的应用。为了解决数据稀疏问题,在标记数据不足,在本研究中提出了一种基于深度学习的故障诊断方法,探索了额外的无监督数据,这些数据通常容易收集。采用了三阶段培训计划,即预培训,代表聚类和加强的监督学习。自动编码器结构用于特征提取,距离度量学习和k均值聚类方法集成在神经网络架构中,用于无监督的学习。两个旋转机械数据集用于验证。所提出的方法不仅可以实现有希望的半监督学习任务的诊断性能,少数标记数据,而且非常适合纯粹无人监督的学习问题。实验结果表明,该方法在利用无监督的故障诊断数据方面提供了有希望的方法。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2020年第9期|106825.1-106825.18|共18页
  • 作者

    Xiang Li; Xu Li; Hui Ma;

  • 作者单位

    College of Sciences Northeastern University Shenyang 110819 China Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education Northeastern University Shenyang 110819 China Department of Mechanical and Materials Engineering University of Cincinnati Cincinnati 45221 USA;

    State Key Laboratory of Rolling and Automation Northeastern University Shenyang 110819 China;

    School of Mechanical Engineering and Automation Northeastern University Shenyang 110819 China Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education Northeastern University Shenyang 110819 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fault diagnosis; Deep learning; Unsupervised learning; Weakly supervised learning; Clustering;

    机译:故障诊断;深度学习;无监督的学习;弱势监督学习;聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号