机译:基于深度代表聚类的故障诊断方法与旋转机械施加无监督数据
College of Sciences Northeastern University Shenyang 110819 China Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education Northeastern University Shenyang 110819 China Department of Mechanical and Materials Engineering University of Cincinnati Cincinnati 45221 USA;
State Key Laboratory of Rolling and Automation Northeastern University Shenyang 110819 China;
School of Mechanical Engineering and Automation Northeastern University Shenyang 110819 China Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education Northeastern University Shenyang 110819 China;
Fault diagnosis; Deep learning; Unsupervised learning; Weakly supervised learning; Clustering;
机译:一种新型无监督深度学习网络,用于旋转机械的智能故障诊断
机译:通用归一化稀疏滤波:一种用于旋转机械故障诊断的新型无监督学习方法
机译:基于深度学习的智能故障诊断方法旋转机械
机译:随机优化方法在基于BP网络的旋转机械故障诊断中的应用
机译:旋转机械中滚动轴承故障的分析:实验,建模,故障检测和诊断。
机译:基于改进的CNN-SVM和多通道数据融合的旋转机械智能故障诊断深度学习新方法
机译:基于旋转机械故障诊断的深神经网络方法基于原始数据的数据分割和增强方法