首页> 外文期刊>Mechanical systems and signal processing >Design of structural monitoring sensor network using surrogate modeling of stochastic sensor signal
【24h】

Design of structural monitoring sensor network using surrogate modeling of stochastic sensor signal

机译:用随机传感器信号代理建模设计结构监测传感器网络

获取原文
获取原文并翻译 | 示例

摘要

Efficient Structural Health Monitoring (SHM) could reduce operation and maintenance costs, improve longevity, and enhance safety of the performance in complex mechanical systems. Traditional sensor network for SHM relied on simple sensor behavior without considering uncertain factors from system and environment. A probabilistic sensing model is required to simulate the realistic and stochastic sensor performance in the sensor network design process. In this paper, we introduce reliability-based design optimization for piezoelectric sensor network considering the detectability of different failure modes. The proposed method diagnoses failure based on the Mahalanobis Distance (MD) suitable for many SHM processes, while considering the uncertainties from structure properties and operation condition. Kriging is applied for surrogate modeling of the stochastic sensor signal and reduce computational cost. The optimal piezoelectric sensor network design is prototyped and its failure detection capability is experimentally verified.
机译:高效的结构健康监测(SHM)可以降低运营和维护成本,提高长寿,增强复杂机械系统中性能的安全性。用于SHM的传统传感器网络依赖于简单的传感器行为,而不考虑系统和环境的不确定因素。需要概率传感模型来模拟传感器网络设计过程中的现实和随机传感器性能。本文在考虑不同故障模式的可检测性的情况下,我们对压电传感器网络引入基于可靠性的设计优化。所提出的方法基于适合于许多SHM工艺的Mahalanobis距离(MD)诊断失败,同时考虑到结构性质和操作条件的不确定性。 Kriging用于随机传感器信号的代理建模,降低计算成本。最佳压电传感器网络设计是原型的,其故障检测能力是通过实验验证的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号