首页> 外文期刊>Mechanical systems and signal processing >Non-negative and sparsity constrained inverse problems in damage identification - Application to a full-scale 3D truss
【24h】

Non-negative and sparsity constrained inverse problems in damage identification - Application to a full-scale 3D truss

机译:损伤识别中的非负稀疏约束反问题-应用于全尺寸3D桁架

获取原文
获取原文并翻译 | 示例

摘要

Non-negative constrained least squares and l_1-norm optimization are sometimes viable inverse-based methods used to quantify and locate damage described by local stiffness reductions using measured changes in natural frequencies. Although the two methods provide meaningful solutions to the associated underdetermined inverse problem when the physically correct solution is sufficiently sparse, each method is disadvantaged in terms of either solution uniqueness, regularization, or forced sparsity. This paper addresses these challenges and argues that combining the non-negative constraint and l_1 -norm optimization improves performance and abates or improves upon the deficiencies of the standalone methods. This paper demonstrates that the optimal set of solutions satisfying the non-negative least squares is bounded and that estimating these bounds provides a novel measure for interpreting the validity of the sparse solution recovered from the proposed non-negative constrained l_1-norm optimization method. The proposed method is numerically verified and experimentally tested on vibration data taken from a 17.24 m × 1.98 m × 1.83 m full-scale three-dimensional truss subjected to three progressive local damage cases.
机译:非负约束最小二乘法和l_1范数优化有时是可行的基于逆的方法,用于量化和定位通过使用测得的固有频率变化来降低局部刚度而描述的损伤。尽管在物理上正确的解决方案足够稀疏时,这两种方法为相关的欠定反问题提供了有意义的解决方案,但是每种方法在解决方案唯一性,正则化或强制稀疏性方面均处于不利地位。本文解决了这些挑战,并提出将非负约束与l_1-范数优化相结合可以提高性能,并减轻或改善独立方法的不足。本文证明了满足非负最小二乘的最优解集是有界的,并且估计这些界限为解释从提出的非负约束l_1-范数优化方法中恢复的稀疏解的有效性提供了一种新的措施。对该方法进行了数值验证和实验测试,该振动数据来自17.24 m×1.98 m×1.83 m的全尺寸三维桁架,并经受了三种局部性局部破坏。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号