首页> 外文期刊>Mechanical systems and signal processing >Bridge modal identification using acceleration measurements within moving vehicles
【24h】

Bridge modal identification using acceleration measurements within moving vehicles

机译:使用移动车辆中的加速度测量来识别桥梁模态

获取原文
获取原文并翻译 | 示例

摘要

Vehicles commuting over bridge structures respond dynamically to the bridge's vibrations. An acceleration signal collected within a moving vehicle contains a trace of the bridge's structural response, but also includes other sources such as the vehicle suspension system and surface roughness-induced vibrations. This paper introduces two general methods for the bridge system identification using data exclusively collected by a network of moving vehicles. The contributions of the vehicle suspension system are removed by deconvolving the vehicle response in frequency domain. The first approach utilizes the vehicle transfer function, and the second uses ensemble empirical modal decomposition (EEMD). Next, roughness-induced vibrations are extracted through a novel application of second-order blind identification (SOBI) method. After these two processes, the resulting signal is equivalent to the readings of mobile sensors that scan the bridge's dynamic response. Structural modal identification using mobile sensor data has been recently made possible with the extended structural modal identification using expectation maximization (STRIDEX) algorithm. The processed mobile sensor data is analyzed using STRIDEX to identify the modal properties of the bridge. The performance of the methods are validated on numerical case studies of a long single-span bridge with a network of moving vehicles collecting data while in motion. The analyses consider three road surface roughness patterns. Results show that for long-span bridges with medium- to high-ongoing traffic volume, the proposed algorithms are successful in extracting pure bridge vibrations, and produce accurate and comprehensive modal properties of the bridge. The study shows that the proposed transfer function method can efficiently deconvolve the linear dynamics of a moving vehicle. EEMD method is able to extract vehicle dynamic response without a priori information about the vehicle. In addition, proposed identification methods provide secondary information about the roughness pattern and the vehicle. This study is the first proposed methodology for complete bridge modal identification, including operational natural frequencies, mode shapes and damping ratios using moving vehicles sensor data.
机译:在桥梁结构上通勤的车辆会动态响应桥梁的振动。在行驶中的车辆中收集的加速度信号不仅包含桥梁的结构响应轨迹,而且还包含其他来源,例如车辆悬架系统和表面粗糙度引起的振动。本文介绍了两种通用的方法来识别桥梁系统,这些方法使用移动车辆网络专门收集的数据进行识别。通过在频域中对车辆响应进行反卷积可以消除车辆悬架系统的影响。第一种方法利用车辆传递函数,第二种方法使用整体经验模态分解(EEMD)。接下来,通过二阶盲识别(SOBI)方法的新颖应用来提取粗糙度引起的振动。经过这两个过程,所得到的信号相当于扫描桥梁动态响应的移动传感器的读数。最近,通过使用期望最大化(STRIDEX)算法的扩展结构模态识别,使得使用移动传感器数据进行结构模态识别成为可能。使用STRIDEX分析处理后的移动传感器数据,以识别桥梁的模态特性。该方法的性能在一个长单跨桥梁的数值案例研究中得到了验证,该桥梁具有移动车辆网络,可在运动时收集数据。分析考虑了三种路面粗糙度模式。结果表明,对于中到高流量的大跨度桥梁,所提出的算法能够成功提取纯桥梁振动,并产生准确而全面的模态特性。研究表明,所提出的传递函数方法可以有效地消除运动车辆的线性动力学的卷积。 EEMD方法能够在没有车辆先验信息的情况下提取车辆动态响应。另外,提出的识别方法提供了关于粗糙度图案和车辆的辅助信息。这项研究是首次提出的用于完整桥梁模态识别的方法,包括使用运动车辆传感器数据进行的固有频率,模态形状和阻尼比的识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号