首页> 外文期刊>Mechanical systems and signal processing >A bounding-limit-state-surface-based active learning Kriging method for hybrid reliability analysis under random and probability-box variables
【24h】

A bounding-limit-state-surface-based active learning Kriging method for hybrid reliability analysis under random and probability-box variables

机译:随机和概率箱变量下基于边界状态表面的主动学习克里格法用于混合可靠性分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new method for efficient hybrid reliability analysis under both random and probability-box variables. Due to the existence of probability-box variables, the failure probability yielded by hybrid reliability analysis is an interval value. In practical engineering, numerical models are becoming more and more time-consuming, which promotes that metamodel-assisted reliability analysis methods gain considerable attention. The failure probability in hybrid reliability analysis under both random and probability-box variables can be calculated by transforming the original uncertainty space into the standard normal space. Then a limit-state band with two bounding limit-state surfaces is generated in the standard normal space. In this paper, it is determined that the lower and upper bounds of failure probability can be accurately estimated based on a Kriging metamodel as it can well describe the two bounding limit-state surfaces. Then, a new active learning strategy based on bounding limit-state surface is proposed to sequentially update Kriging metamodel by adding new update points in the vicinity of the bounding limit-state surfaces into design of experiments. Meanwhile, two error measurement functions are presented to terminate the update process by calculating the metamodel error. Combining the bounding-limit-state-surface-based active learning Kriging with interval Monte Carlo simulation, a new method for hybrid reliability analysis under both random and probability-box variables is developed. In this method, the lower and upper bounds of failure probability are estimated by interval Monte Carlo simulation based on the built Kriging metamodel. The proposed method is tested by six examples. Its comparison with some existing reliability analysis methods is provided. The high accuracy and efficiency of the proposed method are validated by comparative results.
机译:本文提出了一种在随机变量和概率框变量下进行有效混合可靠性分析的新方法。由于存在概率箱变量,混合可靠性分析得出的故障概率是一个区间值。在实际工程中,数值模型变得越来越耗时,这促使以元模型为基础的可靠性分析方法引起了广泛的关注。通过将原始不确定性空间转换为标准正态空间,可以计算出在随机和概率框变量下的混合可靠性分析中的失效概率。然后在标准法向空间中生成具有两个边界极限状态曲面的极限状态带。在本文中,由于可以很好地描述两个边界极限状态曲面,因此确定可以基于Kriging元模型准确估计故障概率的上下限。然后,提出了一种新的基于边界极限状态面的主动学习策略,通过在实验设计的边界极限状态面附近添加新的更新点,来依次更新克里格元模型。同时,提出了两种误差测量功能,通过计算元模型误差来终止更新过程。结合基于边界状态表面的主动学习克里格与区间蒙特卡洛模拟,开发了一种在随机和概率盒变量下进行混合可靠性分析的新方法。在这种方法中,基于建立的克里格元模型,通过区间蒙特卡洛模拟来估计故障概率的上下限。通过六个示例对提出的方法进行了测试。提供了它与一些现有可靠性分析方法的比较。比较结果验证了所提方法的高精度和高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号