首页> 外文期刊>Mechanical systems and signal processing >A spectrum-driven damage identification by minimum constitutive relation error and sparse regularization
【24h】

A spectrum-driven damage identification by minimum constitutive relation error and sparse regularization

机译:基于最小本构关系误差和稀疏正则化的谱驱动损伤识别

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel model-based damage identification strategy based on minimum constitutive relation error and sparse regularization using the power spectrum density data. Firstly, the stationary random vibration problem is transformed into a series of harmonic vibrations by the pseudo excitation method and the error in constitutive relation is established by the admissible stress field and admissible displacement field. A much more general and simpler strategy so as to build the admissible stress field is addressed by requiring only an extra decomposition of the stiffness matrix. Then, the sparse regularization is added to the original constitutive relation error objective function to circumvent the ill-posedness of the inverse problem. Finally, the solution of this nonlinear optimization problem is solved by the alternating minimization method. The proposed method has the advantage that only measurement power spectrum density data from few limited sensors are needed in the inverse analysis. Numerical and experimental results show the effectiveness and robustness of this approach.
机译:本文提出了一种基于最小本构关系误差和基于功率谱密度数据的稀疏正则化的基于模型的新型损伤识别策略。首先,通过拟激励方法将平稳随机振动问题转化为一系列谐波振动,并通过容许应力场和容许位移场建立本构关系的误差。通过仅需对刚度矩阵进行额外分解,可以解决一种更通用,更简单的策略,以建立允许的应力场。然后,将稀疏正则化添加到原始本构关系误差目标函数中,以规避反问题的不适定性。最后,通过交替最小化方法解决了该非线性优化问题的解决方案。所提出的方法的优点在于,在逆分析中仅需要来自几个有限传感器的测量功率谱密度数据。数值和实验结果表明了该方法的有效性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号