首页> 外文期刊>Mechanical systems and signal processing >Characteristic nonlinear system identification: A data-driven approach for local nonlinear attachments
【24h】

Characteristic nonlinear system identification: A data-driven approach for local nonlinear attachments

机译:特征非线性系统识别:局部非线性附件的数据驱动方法

获取原文
获取原文并翻译 | 示例

摘要

This research introduces the characteristic nonlinear system identification (CNSI) procedure for identifying the dynamics of local nonlinear attachments. Unlike many existing methods, the CNSI method requires no prior knowledge or models of the dynamics governing the parent structure or the attachment. Instead, the CNSI technique relies entirely on post-processing of the measured transient response of the attachment and its connection points to the base structure (such that the relative motion can be computed), its mass and a proposed model for its dynamics. The CNSI approach is divided into two phases: a data-processing phase and a model-identification phase. In the first phase, the measured response is post-processed to obtain characteristic displacements and velocities, and instantaneous frequency and damping curves. In the second phase, the analyst proposes a model for the dynamics of the attachment and performs a systematic identification for the unknown parameters using the post-processed data. The result is a reduced-order model, including both nonlinear stiffness and damping, that captures the physics governing the response of the attachment. The CNSI method is demonstrated experimentally using the response of a linear oscillator with a smooth nonlinear attachment. (C) 2019 Elsevier Ltd. All rights reserved.
机译:这项研究介绍了特征非线性系统识别(CNSI)程序,用于识别局部非线性附件的动力学。与许多现有方法不同,CNSI方法不需要控制母体结构或附件的动力学的先验知识或模型。取而代之的是,CNSI技术完全依赖于所测附件的瞬时响应及其与基础结构的连接点(这样就可以计算出相对运动),其质量以及所建议的动力学模型的后处理。 CNSI方法分为两个阶段:数据处理阶段和模型识别阶段。在第一阶段,对测得的响应进行后处理以获得特征位移和速度,以及瞬时频率和阻尼曲线。在第二阶段,分析人员提出了附件动力学模型,并使用后处理数据对未知参数进行了系统识别。结果是一个降阶模型,包括非线性刚度和阻尼,该模型捕获了控制附件响应的物理过程。使用具有平滑非线性附件的线性振荡器的响应,通过实验证明了CNSI方法。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号