首页> 外文期刊>Mechanical systems and signal processing >A Gaussian process latent force model for joint input-state estimation in linear structural systems
【24h】

A Gaussian process latent force model for joint input-state estimation in linear structural systems

机译:线性结构系统中联合输入状态估计的高斯过程潜力模型

获取原文
获取原文并翻译 | 示例

摘要

The problem of combined state and input estimation of linear structural systems based on measured responses and a priori knowledge of structural model is considered. A novel methodology using Gaussian process latent force models is proposed to tackle the problem in a stochastic setting. Gaussian process latent force models (GPLFMs) are hybrid models that combine differential equations representing a physical system with data-driven non-parametric Gaussian process models. In this work, the unknown input forces acting on a structure are modelled as Gaussian processes with some chosen covariance functions which are combined with the mechanistic differential equation representing the structure to construct a GPLFM. The GPLFM is then conveniently formulated as an augmented stochastic state-space model with additional states representing the latent force components, and the joint input and state inference of the resulting model is implemented using Kalman filter. The augmented state-space model of GPLFM is shown as a generalization of the class of input-augmented state-space models, is proven observable, and is robust against drift in force estimation compared to conventional augmented formulations. The hyperparameters governing the covariance functions are estimated using maximum likelihood optimization based on the observed data, thus overcoming the need for manual tuning of the hyperparameters by trial-and-error. To assess the performance of the proposed GPLFM method, several cases of state and input estimation are demonstrated using numerical simulations on a 10-dof shear building and a 76-storey ASCE benchmark office tower. Results obtained indicate the superior performance of the proposed approach over conventional Kalman filter based approaches. (C) 2019 Elsevier Ltd. All rights reserved.
机译:考虑了基于测得的响应和结构模型的先验知识的线性结构系统的组合状态和输入估计的问题。提出了一种使用高斯过程潜力模型的新颖方法来解决随机环境中的问题。高斯过程潜力模型(GPLFM)是混合模型,将代表物理系统的微分方程与数据驱动的非参数高斯过程模型结合在一起。在这项工作中,作用在结构上的未知输入力被建模为高斯过程,并带有一些选定的协方差函数,这些函数与代表结构的机械微分方程相结合以构造GPLFM。然后将GPLFM方便地公式化为具有表示潜力分量的其他状态的增强型随机状态空间模型,并使用卡尔曼滤波器实现所得模型的联合输入和状态推断。 GPLFM的增强状态空间模型显示为一类输入增强状态空间模型的概括,被证明是可观察到的,并且与传统的增强公式相比,在力估计中具有鲁棒性。基于观察到的数据,使用最大似然优化来估计控制协方差函数的超参数,从而克服了通过反复试验手动调整超参数的需求。为了评估所提出的GPLFM方法的性能,在10 dof剪切建筑物和76层ASCE基准办公大楼上使用数值模拟,演示了几种状态和输入估计的情况。获得的结果表明,所提出的方法优于基于传统卡尔曼滤波器的方法。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号