首页> 外文期刊>Mechanical systems and signal processing >Neural networks for 3D temperature field reconstruction via acoustic signals
【24h】

Neural networks for 3D temperature field reconstruction via acoustic signals

机译:通过声信号重建3D温度场的神经网络

获取原文
获取原文并翻译 | 示例

摘要

Reconstructed 3D temperature field will provide critical input for the control mechanisms to optimize the thermal fluids and combustion process. In this paper, a distributed optical fiber sensing system is used to generate acoustic signals for real-time monitoring and optimization of spatial and temporal distributions of high temperature profile in a boiler furnace in fossil power plants. A code division multiple access (CDMA) based acoustic signal modulation technique for improved signal to noise ratio (SNR) and simultaneous sending/receiving is developed. A kernel regression model which approximates the temperature field as a finite summation of products of space-dependent Gaussian Radial Basis Functions (GRBF) and time-dependent coefficients is established. The inversion problem to estimate the best parameters of Gaussian functions is solved by optimizing a cost function using gradient descent method. Guidance on how to tune design parameters is also given. And regularization is applied for solving the trade-off problem between bias and variance. The numerical simulations show an approximation error less than 5% in 3D temperature field reconstruction. Besides that, the performance of learned model with variation of some relevant design parameters is evaluated, and error analysis for temperature field reconstruction with measurement noise is also given. To validate the availability and efficiency of our proposed 3D temperature field reconstruction mechanism, a 2D temperature field distribution experiment test on microphone is carried out and satisfactory estimation accuracy is achieved. Published by Elsevier Ltd.
机译:重建的3D温度场将为控制机构提供关键输入,以优化热流体和燃烧过程。在本文中,分布式光纤传感系统用于生成声信号,以实时监测和优化化石电厂锅炉炉中高温分布的时空分布。开发了一种基于码分多址(CDMA)的声信号调制技术,用于改善信噪比(SNR)和同时发送/接收。建立了一个内核回归模型,该模型将温度场近似为空间相关的高斯径向基函数(GRBF)与时间相关系数的乘积的有限总和。通过使用梯度下降法优化成本函数,解决了估计高斯函数最佳参数的反演问题。还提供了有关如何调整设计参数的指南。并且正则化被用于解决偏差和方差之间的权衡问题。数值模拟显示在3D温度场重建中的近似误差小于5%。除此之外,评估了学习模型在某些相关设计参数变化的情况下的性能,并给出了带有测量噪声的温度场重构的误差分析。为了验证我们提出的3D温度场重构机制的可用性和效率,在麦克风上进行了2D温度场分布实验测试,并获得了令人满意的估计精度。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号