首页> 外文期刊>Mechanical systems and signal processing >An analytical investigation into the propagation properties of uncertainty in a two-stage fast Bayesian spectral density approach for ambient modal analysis
【24h】

An analytical investigation into the propagation properties of uncertainty in a two-stage fast Bayesian spectral density approach for ambient modal analysis

机译:用于环境模态分析的两阶段快速贝叶斯光谱密度方法中不确定性传播特性的分析研究

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the uncertainty propagation properties of a two-stage fast Bayesian spectral density approach (two-stage fast BSDA) with separated modes proposed previously by the authors Yan and Katafygiotis (2015a,b) [1,2], deriving explicit formulas for the dependence of the posterior coefficients of variation (c.o.v.) of the identified modal parameters in terms of different parameters influencing the identification. For this, an approximation analysis strategy proposed in Au (2014a,b) [3,4] is adopted. Although the explicit closed-form approximation expressions are relatively complex, the expressions for the approximate dependence of uncertainty are simple and informative. The analysis reveals a strong correlation among the prediction error, the damping ratio and the power spectral density (PSD) of the modal excitation. While similar correlation trends have been observed in the posterior uncertainty analysis of the fast Bayesian FFT (fast BFFT) approach Au (2014a) [3], the present method shows that the identification results are more sensitive to modeling error. Note that this is not a contradicting result, as the uncertainty propagation properties of different methods may generally differ. Note that fast BFFT is a more fundamental method, in the sense that it processes FFT data directly, while the two-stage fast BSDA uses spectral density data in a manner that allows for decoupling of the mode shape data. Validation studies using synthetic data and field data measured from a laboratory model provide a practical verification of the rationality and accuracy of the theoretical findings. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本文研究了由Yan和Katafygiotis(2015a,b)[1,2]先前提出的分离模式的两阶段快速贝叶斯频谱密度方法(两阶段快速BSDA)的不确定性传播特性,并推导了显式公式。确定的模态参数的后验变异系数(cov)对影响识别的不同参数的依赖性。为此,采用了Au(2014a,b)[3,4]中提出的近似分析策略。尽管显式闭合形式的近似表达式相对复杂,但是不确定性的近似依赖表达式却简单而实用。分析表明,模态激励的预测误差,阻尼比和功率谱密度(PSD)之间具有很强的相关性。尽管在快速贝叶斯FFT(快速BFFT)方法Au(2014a)的后验不确定性分析中已观察到类似的相关趋势,但本方法表明识别结果对建模误差更敏感。请注意,这并不是矛盾的结果,因为不同方法的不确定性传播属性通常可能会有所不同。请注意,就其直接处理FFT数据而言,快速BFFT是一种更基本的方法,而两级快速BSDA以允许对模式形状数据进行解耦的方式使用频谱密度数据。使用从实验室模型测得的合成数据和现场数据进行的验证研究,对理论发现的合理性和准确性进行了实际验证。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号