首页> 外文期刊>Mechanical systems and signal processing >Uncertainty quantification in the mathematical modelling of a suspension strut using bayesian inference
【24h】

Uncertainty quantification in the mathematical modelling of a suspension strut using bayesian inference

机译:贝叶斯推理的悬架支撑杆数学建模中的不确定度量化

获取原文
获取原文并翻译 | 示例

摘要

In the field of structural engineering, mathematical models are utilized to predict the dynamic response of systems such as a suspension strut under different boundary and loading conditions. However, different mathematical models exist based on their governing functional relations between the model input and state output parameters. For example, the spring-damper component of a suspension strut is considered. Its mathematical model can be represented by linear, nonlinear, axiomatic or empiric relations resulting in different vibrational behaviour. The uncertainty that arises in the prediction of the dynamic response from the resulting different approaches in mathematical modelling may be quantified with BAYESIAN inference approach especially when the system is under structural risk and failure assessment. As the dynamic output of the suspension strut, the spring-damper compression and the spring-damper forces as well as the ground impact force are considered in this contribution that are taken as the criteria for uncertainty evaluation due to different functional relations of models. The system is excited by initial velocities that depend on a drop height of the suspension strut during drop tests. The suspension strut is a multi-variable system with the payload and the drop height as its varied input variables in this investigation. As a new approach, the authors present a way to adequately compare different models based on axiomatic or empiric assumptions of functional relations using the posterior probabilities of competing mathematical models. The posterior probabilities of different mathematical models are used as a metric to evaluate the model uncertainty of a suspension strut system with similar specifications as actual suspension struts in automotive or aerospace applications for decision making in early design stage. The posterior probabilities are estimated from the likelihood function, which is estimated from the cartesian vector distances between the predicted output and the experimental output. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在结构工程领域,数学模型用于预测系统(例如悬架支撑杆)在不同边界和载荷条件下的动态响应。但是,基于模型输入和状态输出参数之间的支配功能关系,存在不同的数学模型。例如,考虑了悬架支柱的弹簧阻尼器组件。它的数学模型可以用线性,非线性,公理或经验关系表示,从而导致不同的振动行为。可以用贝叶斯推理方法量化数学建模中不同方法所产生的动态响应预测中的不确定性,尤其是在系统处于结构风险和故障评估之下的情况下。作为悬架支柱的动态输出,弹簧阻尼器压缩和弹簧阻尼器力以及地面冲击力在此贡献中被考虑,由于模型的不同功能关系,其被用作不确定性评估的标准。该系统由初始速度激励,该初始速度取决于在跌落测试过程中悬架支柱的跌落高度。悬架支柱是一个多变量系统,在此研究中,有效载荷和跌落高度是其不同的输入变量。作为一种新方法,作者提出了一种方法,可以使用竞争性数学模型的后验概率,根据公理或经验的功能关系假设,充分比较不同的模型。将不同数学模型的后验概率用作度量标准,以评估具有与汽车或航空航天应用中的实际悬架支柱相似规格的悬架支柱系统的模型不确定性,以便在设计初期进行决策。后验概率是根据似然函数估算的,该似然函数是根据预测输出与实验输出之间的笛卡尔矢量距离估算的。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号