首页> 外文期刊>Mathematics of Operations Research >Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options
【24h】

Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options

机译:具有双指数跳的跳扩散过程的占用时间和期权的定价

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we provide Laplace transform-based analytical solutions to pricing problems of various occupation-time-related derivatives such as step options, corridor options, and quantile options under Kou's double exponential jump diffusion model. These transforms can be inverted numerically via the Euler Laplace inversion algorithm, and the numerical results illustrate that our pricing methods are accurate and efficient. The analytical solutions can be obtained primarily because we derive the closed-form Laplace transform of the joint distribution of the occupation time and the terminal value of the double exponential jump diffusion process. Beyond financial applications, the mathematical results about occupation times of a jump diffusion process are of more general interest in applied probability. [PUBLICATION ABSTRACT] Show less
机译:在本文中,我们提供了基于Laplace变换的分析解决方案,以解决寇氏双指数跳跃扩散模型下各种与占领时间相关的衍生产品的定价问题,例如阶梯期权,走廊期权和分位数期权。可以通过Euler Laplace反演算法对这些变换进行数值反演,数值结果表明我们的定价方法准确有效。可以得到解析解,主要是因为我们得出了占用时间和双指数跳跃扩散过程的最终值的联合分布的闭合形式的拉普拉斯变换。除金融应用外,关于跳跃扩散过程的占用时间的数学结果在应用概率中也具有更广泛的意义。 [出版物摘要]显示较少

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号