首页> 外文期刊>Mathematics and computers in simulation >A boundary shape function iterative method for solving nonlinear singular boundary value problems
【24h】

A boundary shape function iterative method for solving nonlinear singular boundary value problems

机译:一种求解非线性奇异边值问题的边界形状函数迭代方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel iterative algorithm is developed to solve second-order nonlinear singular boundary value problem, whose solution exactly satisfies the Robin boundary conditions specified on the boundaries of a unit interval. The boundary shape function is designed such that the boundary conditions can be fulfilled automatically, which renders a new algorithm with the solution playing the role of a boundary shape function. When the free function is viewed as a new variable, the original singular boundary value problem can be properly transformed to an initial value problem. For the new variable the initial values are given, whereas two unknown terminal values are determined iteratively by integrating the transformed ordinary differential equation to obtain the new terminal values until they are convergent. As a consequence, very accurate solutions for the nonlinear singular boundary value problems can be obtained through a few iterations. The present method is different from the traditional shooting method, which needs to guess initial values and solve nonlinear algebraic equations to approximate the missing initial values. As practical applications of the present method, we solve the Blasius equation for describing the boundary layer behavior of fluid flow over a flat plate, where the Crocco transformation is employed to transform the third-order differential equation to a second-order singular differential equation. We also solve a nonlinear singular differential equation of a pressurized spherical membrane with a strong singularity.
机译:在本文中,开发了一种新颖的迭代算法来解决二阶非线性奇异边值问题问题,其解决方案精确地满足了单位间隔边界上规定的罗宾边界条件。设计边界形状功能,使得可以自动实现边界条件,这使得具有播放边界形状功能的作用的解决方案呈现了一种新的算法。当自由函数被视为新变量时,原始奇异边值字问题可以正确转换为初始值问题。对于新变量,给出初始值,而通过积分变换的常微分方程来迭代地确定两个未知的终端值以获得新的终端值直到它们是收敛的。因此,通过几个迭代可以获得对非线性奇异边值问题的非常准确的解决方案。本方法与传统拍摄方法不同,这需要猜测初始值并求解非线性代数方程以近似缺少初始值。作为本方法的实际应用,我们解决了用于描述平板上的流体流动边界层行为的Blasius方程,其中使用Crocco变换将三阶微分方程转换为二阶奇差微分方程。我们还解决了具有强烈奇点的加压球形膜的非线性奇异微分方程。

著录项

  • 来源
    《Mathematics and computers in simulation》 |2021年第9期|614-629|共16页
  • 作者单位

    College of Mechanics and Materials Hohai University Nanjing Jiangsu 210098 China Center of Excellence for Ocean Engineering Center of Excellence for the Oceans National Taiwan Ocean University Keelung 20224 Taiwan;

    Department of Mathematics College of Sciences and Humanities in Al-Kharj Prince Sattam bin Abdulaziz University Alkharj 11942 Saudi Arabia Department of Basic Engineering Science Faculty of Engineering Menofia University Shebin El-Kom 32511 Egypt;

    Department of Mechanical Engineering National United University Miaoli 36063 Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nonlinear singular boundary value problem; Boundary shape functions method; Iterative method;

    机译:非线性奇异边值问题;边界形状函数方法;迭代方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号