首页> 外文期刊>Mathematics and computers in simulation >An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm-Liouville problems
【24h】

An efficient numerical method for estimating eigenvalues and eigenfunctions of fractional Sturm-Liouville problems

机译:一种高效的数值方法,用于估算分数斯特林 - 利维尔问题的特征值和特征障碍

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we construct numerical schemes based on the Lagrange polynomial interpolation to solve Fractional Sturm-Liouville problems (FSLPs) in which the fractional derivatives are considered in the Caputo sense. First, we convert the differential equation with boundary conditions into integral form and discretize the fractional integral to generate a system of algebraic equations in the matrix form. Next, we calculate the set of approximate eigenvalues and corresponding eigenvectors. The eigenfunctions are approximated and some of their properties are investigated. The experimental rate of convergence of numerical calculations for the eigenvalues is reported and the order convergence of the numerical method is obtained. Finally, some examples are presented to illustrate the efficiency and accuracy of the numerical method.
机译:在本文中,我们构建了基于拉格朗日多项式插值的数值方案,以解决分数Sturm-liouville问题(FSLP),其中在Caputo感应中考虑了分数衍生物。 首先,我们将差分方程与边界条件转换为积分形式,并将分数积分分开以在矩阵形式中生成代数方程的系统。 接下来,我们计算近似特征值和相应的特征向量集。 近似特征局部近似,并调查了一些属性。 报道了对特征值的数值计算的趋同率,并获得了数值方法的顺序收敛。 最后,提出了一些示例以说明数值方法的效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号