首页> 外文期刊>Mathematics and computers in simulation >Quarternion color image processing as an alternative to classical grayscale conversion approaches for pest detection using yellow sticky traps
【24h】

Quarternion color image processing as an alternative to classical grayscale conversion approaches for pest detection using yellow sticky traps

机译:四元型彩色图像处理作为使用黄色粘性陷阱的古典灰度转换方法的替代方法

获取原文
获取原文并翻译 | 示例

摘要

Efficient detection of pests in different types of crops continues to be on today's standards a difficult task. In order to address this problem, the implementation of an Integrated Pest Management (IPM) system involving the detection and classification of insects (pests) is essential for intensive production systems. Traditionally, this has been done by placing hunting traps and later manually counting and identifying the insects found. This has proven to be a very time-consuming and expensive process. Here's where it enters image processing, a method that in the last few years has demonstrated to be a feasible solution to the problem. However, most of the related works with good results mostly rely on images taken from traps placed in greenhouses making the processing a bit easier given the low insect saturation of the traps, which is related to how controlled is the environment in such places. When working with the same task in fields the degree of difficulty increases exponentially given the influence of opposite conditions to the ones mentioned before. This work describes a new approach to the task, by using color image processing with quaternions. The methods proposed here provide a way to extract edge maps from images of yellow sticky traps without losing the spectral relation of the channels composing the image. As a result, all insects in the image are correctly delineated regardless of their color, size and intensity. This allows for more accurate pest detection because it is possible to discriminate and identify different types of insects. The application of this approach was compared with other methods proposed in several papers, showing promising results with much thicker and better closed edges.
机译:有效地检测不同类型的作物的害虫继续在今天的标准上是一项艰巨的任务。为了解决这个问题,涉及检测和分类昆虫(害虫)的综合虫害管理(IPM)系统对集约生产系统至关重要。传统上,这是通过放置狩猎陷阱和后来手动计数和识别发现的昆虫来完成的。这已被证明是一个非常耗时和昂贵的过程。这是它进入图像处理的地方,在过去几年中的方法已经证明是解决问题的可行解决方案。然而,大多数相关的工作都具有良好的结果,主要依赖于从温室中放置的陷阱所采取的图像,使得鉴于陷阱的低昆虫饱和度,这与这种地方的环境有关。在使用该领域的相同任务时,难度呈指数呈指数呈指向相反条件对以前提到的那些的影响。这项工作描述了通过使用季倍的彩色图像处理来描述任务的新方法。这里提出的方法提供了一种从黄色粘性陷阱的图像提取边缘映射的方法,而不会丢失构成图像的信道的光谱关系。结果,无论其颜色,尺寸和强度如何,图像中的所有昆虫都被正确划定。这允许更准确的害虫检测,因为可以区分和识别不同类型的昆虫。将这种方法的应用与几篇论文提出的其他方法进行了比较,呈现出具有更厚度更厚,更好的闭合的效果。

著录项

  • 来源
    《Mathematics and computers in simulation》 |2021年第4期|646-660|共15页
  • 作者单位

    Laboratorio de Sistemas Inteligentes de vision artificial Posgrado en Ingenieria y Tecnologia Aplicada (UAZ) Zacatecas Zacatecas Avenida Ramdn Lopez Velarde #801 Col. Centro C.P. 98000 Mexico;

    Laboratorio de Sistemas Inteligentes de vision artificial Posgrado en Ingenieria y Tecnologia Aplicada (UAZ) Zacatecas Zacatecas Avenida Ramdn Lopez Velarde #801 Col. Centro C.P. 98000 Mexico;

    Laboratorio de Sistemas Inteligentes de vision artificial Posgrado en Ingenieria y Tecnologia Aplicada (UAZ) Zacatecas Zacatecas Avenida Ramdn Lopez Velarde #801 Col. Centro C.P. 98000 Mexico;

    Laboratorio de Sistemas Inteligentes de vision artificial Posgrado en Ingenieria y Tecnologia Aplicada (UAZ) Zacatecas Zacatecas Avenida Ramdn Lopez Velarde #801 Col. Centro C.P. 98000 Mexico;

    Laboratorio de Sistemas Inteligentes de vision artificial Posgrado en Ingenieria y Tecnologia Aplicada (UAZ) Zacatecas Zacatecas Avenida Ramdn Lopez Velarde #801 Col. Centro C.P. 98000 Mexico;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pests; Quaternion; Image processing; Precision agriculture; Pest management; Color images;

    机译:害虫;四元数;图像处理;精密农业;害虫管理;彩色图像;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号