首页> 外文期刊>Mathematics and computers in simulation >An artificial neural network-based forecasting model of energy-related time series for electrical grid management
【24h】

An artificial neural network-based forecasting model of energy-related time series for electrical grid management

机译:电网管理能源相关时间序列的基于人工神经网络的预测模型

获取原文
获取原文并翻译 | 示例

摘要

Forecasting of energy-related variables is crucial for accurate planning and management of electrical power grids, aiming at improving overall efficiency and performance. In this paper, an artificial neural network (ANN)-based model is investigated for short-term forecasting of the hourly wind speed, solar radiation, and electrical power demand. Specifically, the non-linear autoregressive network with exogenous inputs (NARX) ANN is considered, compared to other models, and then selected to perform multi-step-ahead forecasting. Different time horizons have been considered in the range between 8 and 24 h ahead. The simulation analysis has put in evidence the main advantage of the proposed method, i.e., its capability to reconcile good forecasting performance in the short-term time horizon with a very simple network structure, which is potentially implementable on a low-cost processing platform.
机译:能源相关变量的预测对于准确的准确规划和管理电网的规划至关重要,旨在提高整体效率和性能。在本文中,研究了人工神经网络(ANN)的模型,用于对每小时风速,太阳辐射和电力需求的短期预测。具体而言,与其他模型相比,考虑了具有外源输入(NARX)ANN的非线性自回归网络,然后选择执行多步前预测。在未来的8到24小时的范围内被认为是不同的时间视野。仿真分析已经提出了该方法的主要优点,即其在短期时间地平线中与一个非常简单的网络结构中的短期时间地平线调和了良好的预测性能,这可能在低成本处理平台上可实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号