首页> 外文期刊>Mathematics and computers in simulation >Evaluating Machine Learning methods for estimation in online surveys with superpopulation modeling
【24h】

Evaluating Machine Learning methods for estimation in online surveys with superpopulation modeling

机译:评估机器学习方法,估计叠加模型的在线调查

获取原文
获取原文并翻译 | 示例

摘要

Online surveys, despite their cost and effort advantages, are particularly prone to selection bias due to the differences between target population and potentially covered population (online population). This leads to the unreliability of estimates coming from online samples unless further adjustments are applied. Some techniques have arisen in the last years regarding this issue, among which superpopulation modeling can be useful in Big Data context where censuses are accessible. This technique uses the sample to train a model capturing the behavior of a target variable which is to be estimated, and applies it to the nonsampled individuals to obtain population-level estimates. The modeling step has been usually done with linear regression or LASSO models, but machine learning (ML) algorithms have been pointed out as promising alternatives. In this study we examine the use of these algorithms in the online survey context, in order to evaluate and compare their performance and adequacy to the problem. A simulation study shows that ML algorithms can effectively volunteering bias to a greater extent than traditional methods in several scenarios.
机译:在线调查,尽管其成本和努力优势,因此由于目标人口与潜在覆盖人口(在线人口)之间的差异,特别容易出现选择偏见。这导致来自在线样本的估计的不可靠性,除非应用进一步调整。关于这个问题的最后几年出现了一些技术,其中叠加建模在普遍存器的大数据上下文中有用。该技术使用样本训练捕获要估计的目标变量的行为的模型,并将其应用于非采样的个人以获得人口级估计。建模步骤通常用线性回归或套索模型进行,但是机器学习(ML)算法已被指出作为有前途的替代方案。在这项研究中,我们在在线调查背景下检查这些算法的使用,以便评估和比较他们的性能和对问题的充分性。模拟研究表明,ML算法可以在几种情况下比传统方法更大程度地在更大程度上志愿偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号