首页> 外文期刊>Mathematics and computers in simulation >Robust measurement fusion steady-state estimator design for multisensor networked systems with random two-step transmission delays and missing measurements
【24h】

Robust measurement fusion steady-state estimator design for multisensor networked systems with random two-step transmission delays and missing measurements

机译:具有随机两步传输延迟和缺少测量的多传感器网络系统的鲁棒测量静态稳态估计设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the centralized fusion (CF) and weighted measurement fusion (WMF) robust steady-state Kalman filtering problem for a class of multisensor networked systems with mixed uncertainties including multiplicative noises, two-step random delays, missing measurements, and uncertain noise variances. By using a model transformation approach consisting of augmented approach, de-randomization approach and fictitious noise approach, the original multisensor system under study is converted into a multi-model multisensor system with only uncertain noise variances. By introducing an augmented state vector, and applying the weighted least squares (WLS) algorithm, the CF and WMF systems are obtained. According to the minimax robust estimation principle, based on the worst-case fusion systems with conservative upper bounds of uncertain noise variances, the CF and WMF robust steady-state Kalman estimators (predictor, filter, and smoother) are presented in a unified framework. Their robustness is proved by using a combination method consisting of augmented noise approach, matrix representation approach of quadratic form, and Lyapunov equation approach, the so-called robustness is concerned with the design of a filter such that for all admissible uncertainties, the actual fused steady-state estimation error variances of the estimators are guaranteed to have the corresponding minimal upper bounds. The accuracy relations among the robust local and fused steady-state Kalman estimators are proved. An example with application to autoregressive (AR) signal processing is proposed, which shows that the robust fusion signal estimation problems can be solved by the robust fusion state estimation method. Simulation example shows the effectiveness and correctness of the proposed method.
机译:在本文中,我们研究了集中式融合(CF)和加权测量融合(WMF)稳健的稳态卡尔曼滤波问题,用于一类具有混合不确定性的多传感器网络系统,包括乘法噪声,两步随机延迟,测量值和不确定的噪声差异。通过使用由增强方法组成的模型转换方法,De-Acomanization方法和虚拟噪声方法,原始的多传感器系统在研究中被转换为仅具有不确定噪声差异的多模型多传感器系统。通过引入增强状态向量,并施加加权最小二乘(WLS)算法,获得CF和WMF系统。根据极小的鲁棒估计原理,基于具有不确定噪声差异的保守上限的最坏情况融合系统,在统一的框架中呈现CF和WMF稳健稳态卡尔曼估计(预测器,过滤器和更顺畅)。通过使用由增强噪声方法组成的组合方法,二次形式的矩阵表示方法,以及Lyapunov方程方法,所谓的鲁棒性涉及滤波器的设计,使得对于所有可允许的不确定性,实际融合估算器的稳态估计误差差异保证有相应的最小上限。证明了稳健的本地和融合稳态卡尔曼估算中的准确性关系。提出了一个应用于自回归(AR)信号处理的示例,其示出了鲁棒融合信号估计问题可以通过鲁棒融合状态估计方法来解决。仿真示例显示了所提出的方法的有效性和正确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号