首页> 外文期刊>Mathematics and computers in simulation >Numerical solution of two-dimensional fractional-order reaction advection sub-diffusion equation with finite-difference Fibonacci collocation method
【24h】

Numerical solution of two-dimensional fractional-order reaction advection sub-diffusion equation with finite-difference Fibonacci collocation method

机译:二维分数阶反应的数值解,具有有限差异斐波纳契搭配方法的子扩散方程

获取原文
获取原文并翻译 | 示例

摘要

A new finite difference collocation algorithm has been introduced with the help of Fibonacci polynomial and then applied to one super and two sub-diffusion problems having an exact solution. It has also been shown that numerical error obtained with the investigated method is more accurate than previously existing methods. Fractional order reaction advection sub-diffusion equation containing Caputo and Riemann-Liouville fractional derivatives has been solved and the effects due to change in various parameters presented in the considered model with the graphical representation have been discussed.
机译:借助于Fibonacci多项式引入了一种新的有限差分搭配算法,然后应用于具有精确解决方案的一个超级和两个子扩散问题。还显示出用研究方法获得的数值误差比以前现有的方法更准确。已经讨论了含有Caputo和Riemann-Liouville分数衍生物的分数顺序反应副扩散方程,并且已经讨论了由于在考虑模型中呈现的各种参数的变化而具有图形表示的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号