首页> 外文期刊>Mathematics and computers in simulation >Adaptive LASSO for selecting Fourier coefficients in a functional smooth time-varying cointegrating regression: An application to the Feldstein-Horioka puzzle
【24h】

Adaptive LASSO for selecting Fourier coefficients in a functional smooth time-varying cointegrating regression: An application to the Feldstein-Horioka puzzle

机译:适应套索,用于在功能平稳的时变协整聚合物中选择傅立叶系数:对Feldstein-Horioka拼图的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a simple routine to select the specification of a time-varying cointegration model based on a combination of polynomials. Whereas information criteria or approaches based on sequential general to specific testing procedures are commonly used for that issue, to our knowledge, there exists no formal proof of the consistency of these selection methods for these models. In addition, these latter strategies imply exhaustive searches which may be computationally cumbersome. We suggest to use a widespread technique in machine learning, a LASSO-based procedure, that sets the right number of polynomials to combine for describing the time-varying dynamic in a cointegrating regression. Monte Carlo experiments show that the selection consistency of the Adaptive LASSO holds in our context. We applied the outlined methodology to the degree of capital mobility for the some European economies and we found a decline of saving retention within the last two decades.
机译:本文提出了一种简单的例程,以基于多项式的组合选择时变协整组模型的规范。虽然信息标准或基于顺序普通测试程序的方法通常用于该问题,但对于我们的知识,没有任何正式证明这些模型的这些选择方法的一致性。此外,后一种策略意味着令人遗憾的是可以计算地繁琐的搜索。我们建议在机器学习中使用广泛的技术,基于套索的过程,该过程设定了合适的多项式,以结合用于描述协整回归中的时变动态。 Monte Carlo实验表明,自适应套索的选择一致性在我们的背景下持有。我们将概述的方法应用于一些欧洲经济体的资本流动程度,我们发现在过去二十年内节省保留的下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号