首页> 外文期刊>Mathematics and computers in simulation >Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling
【24h】

Gas turbine monitoring using neural network dynamic nonlinear autoregressive with external exogenous input modelling

机译:燃气轮机监测采用神经网络动态非线性归类与外部外源性输入建模

获取原文
获取原文并翻译 | 示例

摘要

The main purpose of the present work is to propose an effective tool which allows to ensure the protection and the safety measures against the instability phenomena in a gas turbine based on the modelling of its dynamic behaviour. In order to provide an efficient diagnostic strategy for this type of rotating machine, a supervision system based on the development of artificial neural network tools is proposed in this paper. Where, the dynamic nonlinear autoregressive approach with external exogenous input NARX is used for the identification of the studied system dynamics, to monitor the vibrational dynamics of the operating turbine. This leads to establishing a solution for the different ranges of rotational speed and ensuring dynamic stability through the vibration indicators, determined by the proposed neural network approach. Also, offer a normalized mean square error on the order of 3.8414e-3 for the high-pressure turbine, 1.29152e-1 for the gas control valve and 2.12090 e-4 for the air control valve. Furthermore, it permits the vibration monitoring and efficiently extracts the essentials of dynamic model behaviour, to effectively size the operating gas turbine system. The obtained results of the application of the proposed approach on the gas turbine system presented in this paper proves its ability for the detection and the management on real-time of the eventual failures caused mainly by intrinsic vibrations. On the other side, these results prove clearly the effectiveness of the use of the artificial neural networks as a very powerful calculation tools in the modelling of complex dynamic systems.
机译:本工作的主要目的是提出一种有效的工具,该工具允许确保基于其动态行为的建模的燃气轮机中的不稳定现象的保护和安全措施。为了为这种类型的旋转机器提供有效的诊断策略,本文提出了一种基于人工神经网络工具发展的监控系统。其中,具有外部外源输入NARX的动态非线性自回归方法用于识别所研究的系统动态,以监测操作涡轮机的振动动力学。这导致建立不同范围的转速范围和通过振动指示器确保动态稳定性,由所提出的神经网络方法确定。此外,为高压涡轮机的3.8414E-3提供标准化均线误差,为气体控制阀为1.29152E-1和空气控制阀的2.12090 E-4。此外,它允许振动监测和有效地提取动态模型行为的必需品,以有效地尺寸尺寸的操作燃气轮机系统。所获得的拟议方法在本文中提出的燃气轮机系统中的应用结果证明了其检测能力和管理的实时失败主要是由内在振动引起的。在另一边,这些结果显然证明了人工神经网络在复杂动态系统建模中使用人工神经网络作为非常强大的计算工具的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号