首页> 外文期刊>Mathematics and computers in simulation >Particle method for segmentation of breast tumors in ultrasound images
【24h】

Particle method for segmentation of breast tumors in ultrasound images

机译:超声图像中乳腺肿瘤的粒子分割方法

获取原文
获取原文并翻译 | 示例

摘要

We propose a new segmentation method based on multiple walking particles (WP) bouncing from the image edges. The particles are able to segment objects characterized by deep concavities as narrow as one pixel and handle single or multiple objects characterized by a noisy background and broken boundaries ("weak edge", "boundary leakage"). The particles are designed to segment the image by permanently staying inside the object and repairing the boundaries where necessary. The proposed WP combine the advantages of the continuous diffusion models with the principles of multi-agent systems. WP have been tested against recent active contours and the distance regularized level set method on a set of complex-shaped synthetic images and ultrasound (US) images of breast cancer (http://onlinemedicalimages.com). The method has also been compared with localizing region-based active contours, the fuzzy C-mean level set method, and morphological active contours. The WP are faster and more accurate for images characterized by low contrast, noise, broken boundaries, or boundary leakage. However, for good quality, simple shaped objects the WP work similarly to the conventional methods. There is still an important difference even in this case: the WP do not require initialization.
机译:我们提出了一种新的分割方法,该方法基于从图像边缘反射的多个步行粒子(WP)。粒子能够分割以一个像素为单位的深凹形为特征的对象,并可以处理以背景为嘈杂和边界破裂(“弱边缘”,“边界泄漏”)为特征的单个或多个对象。粒子被设计为通过永久停留在对象内部并在必要时修复边界来分割图像。拟议的WP将连续扩散模型的优势与多主体系统的原理相结合。 WP已针对一组复杂形状的乳腺癌合成图像和超声(US)图像针对最近的活动轮廓和距离规则化水平集方法进行了测试(http://onlinemedicalimages.com)。还将该方法与基于区域的活动轮廓的定位,模糊C均值水平集方法和形态活动轮廓进行了比较。对于以低对比度,噪声,边界破裂或边界泄漏为特征的图像,WP更快,​​更准确。但是,为了获得高质量,简单形状的物体,WP的工作方式与常规方法相似。即使在这种情况下,仍然存在重要的区别:WP不需要初始化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号