首页> 外文期刊>Mathematics and computers in simulation >PFF-RVM: A new no reference image quality measure
【24h】

PFF-RVM: A new no reference image quality measure

机译:PFF-RVM:一种新的无参考图像质量度量

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new no-reference image quality metric is proposed and developed. A set of ten perceptual features are extracted from each distorted image, then Relevance Vector Machine (RVM) is employed to learn the mapping between the combined features and human opinion scores. Validation tests and simulations are conducted on the LIVE II and MDID 2013 databases. The predictive performances of this new metric (we called PFF-RVM for perceptual features fusion using relevance vector machine based metric) are compared to the most recent no-reference metrics in terms of correlation and monotonicity. Results show that the proposed metric has satisfactory and comparable performances to the most sophisticated and commonly used no-reference quality metrics in the state-of-the-art. (C) 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
机译:本文提出并开发了一种新的无参考图像质量度量。从每个失真的图像中提取一组十个感知特征,然后使用相关向量机(RVM)来学习组合特征与人类意见得分之间的映射。验证测试和模拟是在LIVE II和MDID 2013数据库上进行的。在相关性和单调性方面,将该新指标(我们称为PFF-RVM用于使用基于相关向量机的指标进行感知特征融合的预测性能)与最新的无参考指标进行了比较。结果表明,与最新技术中最复杂,最常用的无参考质量指标相比,拟议指标具有令人满意的可比性能。 (C)2018国际模拟数学与计算机协会(IMACS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号