首页> 外文期刊>Mathematics and computers in simulation >Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions
【24h】

Multiple μ-stability and multiperiodicity of delayed memristor-based fuzzy cellular neural networks with nonmonotonic activation functions

机译:具有非单调激活函数的基于忆阻器的模糊细胞神经网络的多重μ稳定性和周期性

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the multistability and multiperiodicity problems are investigated for the memristor-based fuzzy cellular neural networks (MFCNNs) with nonmonotonic activation functions and unbounded time-varying delays. Based on the fixed point theorem and the geometrical properties of activation functions, sufficient criteria are obtained to ensure such n-neuron MFCNNs can have at least Pi(n)(i=1)( 2K(i) + 1) equilibrium points with K-i 0 in which Pi(n)(i=1)(K-i + 1) are locally mu-stable. As an extension of the theory, the existence of Pi(n)(i=1)(K-i + 1) locally exponentially stable periodic solutions with time-periodic inputs is also derived. Finally, one example is presented to confirm our results. (C) 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
机译:本文研究了具有非单调激活函数和无时滞时滞的基于忆阻器的模糊细胞神经网络(MFCNN)的多稳定性和多周期问题。基于不动点定理和激活函数的几何特性,获得了足够的标准来确保此类n-神经元MFCNN至少具有Pi(n)(i = 1)(2K(i)+ 1)个平衡点,且Ki > 0,其中Pi(n)(i = 1)(Ki +1)在本地是mu-stable。作为该理论的扩展,还推导了具有时间周期输入的Pi(n)(i = 1)(K-i + 1)局部指数稳定周期解的存在。最后,给出一个例子来证实我们的结果。 (C)2018国际模拟数学与计算机协会(IMACS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号