首页> 外文期刊>Mathematics and computers in simulation >Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries
【24h】

Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries

机译:有限体积和间断Galerkin方案中的数值边界条件,用于模拟沿固体边界的稀薄流动

获取原文
获取原文并翻译 | 示例

摘要

We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most of our analysis relies on a 1D problem (Couette flow), but we also present some results for a 2D aerodynamical flow. (C) 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.Y. All rights reserved.
机译:我们提出了两个标准的有限体积方案和应用于稀有气体动力学的BGK方程的不连续Galerkin方法之间的数值比较。我们特别注意数值边界条件,以保持该方法的收敛速度。我们的大多数分析都依赖于一维问题(Couette流),但是我们也给出了二维空气动力学流的一些结果。 (C)2018国际模拟数学与计算机协会(IMACS)。由Elsevier B.Y.发布版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号