首页> 外文期刊>Mathematics and computers in simulation >The MAPS based on trigonometric basis functions for solving elliptic partial differential equations with variable coefficients and Cauchy-Navier equations
【24h】

The MAPS based on trigonometric basis functions for solving elliptic partial differential equations with variable coefficients and Cauchy-Navier equations

机译:基于三角函数的MAPS求解变系数椭圆偏微分方程和Cauchy-Navier方程

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we extended the method of approximate particular solutions (MAPS) using trigonometric basis functions to solve two-dimensional elliptic partial differential equations (PDEs) with variable-coefficients and the Cauchy-Navier equations. The new approach is based on the closed-form particular solutions for second-order differential operators with constant coefficients. For the Cauchy-Navier equations, a reformulation of the equations is required so that the particular solutions for the new differential operators are available. Five numerical examples are provided to demonstrate the effectiveness of the proposed method. (C) 2018 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
机译:在本文中,我们扩展了使用三角函数的近似特解(MAPS)的方法,以求解具有变系数和Cauchy-Navier方程的二维椭圆偏微分方程(PDE)。新方法基于具有常数系数的二阶微分算子的闭式特殊解。对于Cauchy-Navier方程,需要重新公式化,以便可以使用新的微分算子的特定解。提供了五个数值示例,以证明该方法的有效性。 (C)2018国际模拟数学与计算机协会(IMACS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号